N2U Table of Contents

• Nutrition and the Gastroenterologist - Improving Patient Outcomes with Nutritional Assessment and Therapy in IBD - Valeria Cohran
• Energy and Protein Metabolism - Praveen Goday
• Nutrition Assessment & Growth Charts: What do we Really Need to Know - Maria Mascarenhas
• Parenteral Nutrition - Robert Shulman
• Enteral and Parenteral Access: Lines, Locks and Tubes - Mark Corkins
• Critical Care Nutrition Pearls - Valeria Cohran
• Nutrition in Liver Disease - Sam Kocoshis
• Enteral Nutrition - Mark Corkins
• Short Bowel Syndrome - Sam Kocoshis
• Overview of Obesity and Bariatric Nutrition - Ann Scheimann
• Perioperative Nutrition - Rob Shulman
• Food Allergies and Eosinophilic Gastrointestinal Diseases - Glenn Furuta
• Failure to Thrive - Praveen Goday
• Cystic Fibrosis - Maria Mascarenhas
• Bibliography of all Presentations

Click the titles above to jump to a specific presentation
Valeria Cohran, MD, MS
Medical Director of Intestinal Rehabilitation and Transplant
Assistant Professor of Pediatrics at Northwestern University
Feinberg School of Medicine
Children's Memorial Hospital
Chicago, IL

Nutrition and the Gastroenterologist: Improving Patient Outcomes with Nutritional Assessment and Therapy in IBD
Inflammatory Bowel Disease

• 25% of cases are diagnosed in childhood or adolescence
 – Crohn’s Disease
 – Ulcerative Colitis
 • Pan-colitis is a common presentation

• Presentations
 – Abdominal pain, diarrhea, rectal bleeding, weight loss
 – Pediatric population-growth failure

Nutritional Complications

- Growth Failure
- Delayed Puberty
- Osteopenia and Osteoporosis
- Anemia

- Micronutrient Deficiencies
 - Iron, folate, B12, vitamin A, vitamin E, beta-carotene, magnesium, selenium, and zinc
Nutritional Complications

- Growth Failure
- Delayed Puberty
- Osteopenia and Osteoporosis
- Anemia
- Micronutrient Deficiencies
 - Iron, folate, B12, vitamin A, vitamin E, beta-carotene, magnesium, selenium, and zinc
Growth Failure

• Definition
 - Height< 5th percentile
 - Decrease in height velocity below 5th percentile
 - Fall off the child’s growth curve
 - Much higher incidence at diagnosis in CD vs UC.

• Inadequate caloric intake
 - Gastritis, esophagitis, fear of worsening symptoms

• Malabsorption

• Increased energy expenditure from chronic inflammation
 - Pro-inflammatory cytokines, decreased IGF-1, exogenous steroids

Growth in IBD

Growth Hormone Axis

GHRH

Somatostatin

GH

IGF-1

Cartilage, bone, soft tissues

Adipose tissue, muscle

Adapted From MD Consult and Google Images.
Gondatropin Releasing Hormone

Adapted from www.aphis.usda.gov.
Risk Factors with Growth Failure

• Boys are more at risk
 – Approximately 10% cumulative incidence at 10 year from the time of diagnosis
 – Males with CD were significantly shorter than control subjects regardless of pubertal stage.
 – Adjusted HAZ-score using mid-parental height was below predicted

• Patients with poor growth were twice as likely to undergo surgery

Final Adult Height

- Lee et al 295 patients with IBD
- Parents of growth impaired group had lower mean height Z-scores vs. non-growth impaired
- 108 patients with adult heights
 - Growth impaired group had lower adult height Z-scores (-1.38 vs. 0.05; p<0.001)
 - 11.3% persistently growth impaired as adults
- Lower parental height and minimum patient height Z-score were significant predictors of lower final adult height
- Children < 3rd percentile
 - 59% failed to reach the 3rd% for adult height

Growth Assessment

• Height and weight measurements by trained staff
• Obtain premorbid height and weight at baseline
• Obtain accurate parental heights and calculate mid-parental height and percentiles
• Evaluate height velocity at 4-6 month intervals

Nutritional Complications

• Growth Failure
• **Delayed Puberty**
• Osteopenia and Osteoporosis
• Anemia
• Micronutrient Deficiencies
 – Iron, folate, B12, vitamin A, vitamin E, beta-carotene, magnesium, selenium, and zinc
Delayed Puberty

• Mean age of onset of puberty:
 – Girls: 11.1 years, Boys: 12.4 years

• Delayed Puberty:
 – Girls: 13 years, Boys: 14.5 years

• More likely in patients with CD than UC

• Delay in puberty by 0.7 years in Dutch children with IBD

• 1.5 years in CD children in the US

Delayed Puberty

• Retrospective cohort of children with IBD
 – CD patients were more likely to have delay
 – Boys were more commonly affected

• Testosterone has been used effectively to treat pubertal delay in boys
 – 8 boys with IBD median age of 14
 – 7 boys advanced in pubertal stage
 – 6 had >50% increase in height velocity

Cytokines & Pubertal Delay

• TNF-α, IL-6, IL-1
 – Induce anorexia
 – Results in decreased sex hormone function
 • Decreased synthesis of testosterone in Leydig cells in testes
 • Decreased synthesis of sex steroids in the ovary

IGF-1

- Sex hormones influence pubertal growth via the GH axis and IGF-1
- Important for statural growth
- Gupta et al
 - Females > 15 yrs and males > 17 years
 - IGF-1 levels reduced in males and similar along all Tanner Stages
 - Inflammatory markers remaining a significant predictor
 - Markers correlated with testosterone levels in males, but not estradiol in females
 - Inflammation on hormone levels may differ in each sex

Corticosteroids

- Decreases effects of GH/IGF-1 at target tissue
 - Inhibits bone growth
 - Inhibits collagen synthesis
 - ↓ Type I procollagen levels
- Decreases sex steroid secretion
Cytokines & Anorexia

- Increased cytokine levels in malnourished patients
- Cytokines induce specific metabolic changes
 - Stimulating muscle breakdown
- Repeated injections of cytokines causes anorexia in animal models
- Metabolic changes can be counteracted by blocking cytokines
- TNF-α, IL-1, and IL-6

Medical Management

• Control Inflammation
 – Limit steroid exposure
 – 6-MP or azathioprine
 – Infliximab

• Aggressive nutritional therapy
 – Oral/NG/G-tube nutritional supplementation
 • elemental vs. polymeric
 – Parental nutrition

Nutritional Complications

• Growth Failure
• Delayed Puberty
• **Osteopenia and Osteoporosis**
• Anemia
• Micronutrient Deficiencies
 – Iron, folate, B12, vitamin A, vitamin E, beta-carotene, magnesium, selenium, and zinc
Bone Mineral Density (BMD)

- Osteopenia
 - Z-scores < -1
- Osteoporosis
 - Z-scores < -2
- Peak Bone Mass
 - 18-20 yrs boys (13-17)
 - 16 yrs girls (11-14)
- Age at diagnosis of IBD = 10 + 4 yrs

Osteopenia & Osteoporosis

- Multi-factorial
 - Decreased calcium intake
 - Calcium malabsorption
 - Steroids
 - Reduce calcium absorption
 - Down-regulate gene expression of calcium binding protein
 - Inhibit osteoblast proliferation
 - Stimulate osteoclast
 - Cytokine mediated bone absorption
 - Hypovitaminosis D

Bone Mineral Density

• Heavily influenced by growth and puberty
 – Correct for age, bone age, or BMI

• Dual x-ray absorptiometry (DXA)
 – 2-Dimensional
 – Measures a ratio of bone mineral content over the area measured and may lead to an underestimation of BMD

• Peripheral quantitative computer tomography (pQCT)
 – 3-D assessment of the structural and geometric properties of the appendicular skeleton
 – Measures muscle cross sectional area- surrogate for total muscle mass

Osteopenia & Osteoporosis

• Osteopenia prevalence
 – Sylvester et al
 • 43% CD (n=58), 39% UC (n=18), and 29% Controls (n=49)
 – Gokhale et al
 • 35% of CD vs 22% of UC

• Osteoporosis
 – Sylvester et al
 • 12% vs 6% vs 2%
 – Gokhale et al
 • 18% vs 3%
BMD & IBD

- Prospective cohort assessed over 2 year time period
- Total body BMD Z-score
 - (mean SD) was -0.78 ± 1.02 for Crohn’s disease (CD, n 58),
 - -0.46 ± 1.14 for ulcerative colitis (UC, n 18), and
 - -0.17 ± 0.95 for controls (p<0.001 CD vs Control)
- In CD, a BMD Z-score <1.0 was associated with lower BMI and higher serum IL-6
- Activation of bone formation paralleled clinical improvement, but BMC gain was less than expected over the 2-year study period, especially in CD
- Prednisone use did not correlate with low BMD

Cross-sectional study using pQCT of forearm in 143 IBD patients CD = 98, 29% newly diagnosed

Height, weight, and muscle mass were lower as compared to age and sex matched controls

Serum albumin was a good marker for muscle wasting and abnormal bone development

Decreased mechanical stress may relate to reduced bone health

Suggest improving lean tissue mass via nutritional support and weight bearing
Vitamin D

• Produced by the skin when exposed to UV radiation
• Serum 25, OH-D is the most abundant metabolite and indicative of overall vitamin D status
• Pappa et al n=488 IBD pediatric patients
 – 58.3% had suboptimal < (25OHD 32 ng/mL),
 – 14.3% had < 20 ng/mL
 – 5.8% had serum < 15 ng/mL
Vitamin D

- Risk factors included darker skin, winter season, lack of vitamin D supplementation
- ESR, a marker of intestinal inflammation, was associated with lower vitamin D levels
 - Malabsorption
 - Losses of protein bound 25, OHD
- Children with CD and UC should be screened for vitamin D deficiency
- Calcium 1300 mg daily
- Vitamin D 400-800 IU
Fractures

• 2 year prospective fracture study
 – 2-fold increase in fracture risk with each SD decrease in areal BMD

• No prospective studies between fractures and BMD in pediatric IBD patients
 – Vertebral fractures reported in 5 CD patients with LS BMD -2 to -5

Nutritional Complications

- Growth Failure
- Delayed Puberty
- Osteopenia and Osteoporosis

Anemia

- Micronutrient Deficiencies
 - Iron, folate, B12, vitamin A, vitamin E, beta-carotene, magnesium, selenium, and zinc
Anemia

• Blood loss
• Chronic inflammation
• Micronutrient deficiency
 – B12-ileal disease
 – Folate- sulfasalazine
 – Iron-impaired utilization
• Myelosuppression – 6-MP
• Hemolysis

Diagnosis of Anemia

- Microcytosis vs macrocytosis
- Low serum iron
- Lower ferritin
- Serum transferrin receptor levels
- Serum folate
- Serum B_{12}
- Urine methylmalonic acid

Vitamin & Micronutrient Deficiencies

- Zinc
- Copper
- Iron
- Folic Acid
- Vitamin C
- Vitamin D
Vitamin & Micronutrient Deficiencies

• Zinc
• Copper
• Iron
• Folic Acid
• Vitamin C
• Vitamin D
Zinc

• Co-factor in more than 300 metalloenzymes
 – RNA and DNA synthesis
 – Lymphocyte proliferation
 – Cytokine production
 – Free radical activity
 – Wound Healing
 – Serum levels don’t reflect total body zinc depletion
 • Serum levels depend on albumin binding
 • >95% intracellular

• No controlled studies to determine value

Vitamin & Micronutrient Deficiencies

• Zinc
• Copper
• Iron
• Folic Acid
• Vitamin C
• Vitamin D
Folate

- Synthesis, methylation and repair of DNA synthesis
- At the time of diagnosis, higher folate levels in newly diagnosed patients compared to controls
 - Medications over time interfere with metabolism
 - Sulfasalazine and methotrexate
- Recommended dose of 1mg daily is empiric
 - Risk of colorectal cancer and other tumors with folate

Fish Oil: Omega-3 Fatty Acids
Omega-3 : Polyunsaturated Fatty Acids (PUFA)

- Shown to have positive effects in a variety of diseases
 - Cardiovascular, immunologic and inflammatory conditions
- Benefits secondary to anti-inflammatory, vasodilatory, and hypolipidemic properties
- Regulatory effects on cell growth and death
 - Anti cancer effects
Omega-3 PUFA: Mechanism of Action

• Omega-3 incorporate into wall of cells involved in inflammation
• Results in decreased production of inflammatory proteins
 – Halts inflammatory cascade
• Sources—vegetables, fish oil (largest source)

Fish Oil & IBD

• Biologic rationale for use
 – Animal models of IBD and tissue samples from patients with IBD demonstrate strong anti-inflammatory benefits of omega-3

• However, clinical trials show limited or absent clinical benefit
 – Limitations: inadequate delivery system (poor absorption) or inadequate dosing

Fish Oil & IBD

• No data to support their usage!
 – Routine therapies
 – Remission of CD
 – Remission of UC
 – Maintainence of CD
 – Maintainence of UC
Pitfalls of Fish Oil

• FDA does not regulate
 – Mercury and other toxin contamination
 – Reliable supplier

• Side effects
 – Nausea, vomiting, diarrhea, unpleasant taste, bad breath
 • Less common with timed release (enteric coated) preparations

• Compliance
 – May need to take 6-12 capsules daily
Enteral Nutrition
Crohn’s Treatment Algorithm

Induction of Remission
- Exclusive enteral liquid feeds for 6 weeks
- ± aminosalicylates
- Corticosteroids (reducing course)

Maintenance
(Following relapse or treatment resistance)

SECOND-LINE TREATMENT
- Azathioprine or 6-mercaptopurine (6-MP)
 - (Check TPMT level first)

Intolerance or Resistance
- Consider methotrexate (s/c) if failure to respond to azathioprine or 6-mercaptopurine

THIRD-LINE TREATMENT
- SURGERY if localized disease or specific indications
- Infliximab
 - (if fails, adalimumab, cyclosporine, thalidomide)

Enteral Nutrition

• 4% of N American peds GI use regularly vs 62% of European practitioners

• Exact mechanism of action is actually not clear
 – Elimination of dietary antigen uptake
 – Overall nutritional repletion
 – Correction of intestinal permeability
 – Dimunition of intestinal synthesis of inflammatory mediators via reduction of dietary fat
 – Provision of important micronutrients to the diseased intestine

• Evidence that it affect gut microbiota and anti-inflammatory in nature

Evidence for Enteral Nutrition

- Studies have shown up to 20-85% remission in newly diagnosed CD
- Meta analyses showed with 144 subjects found no significant difference in remission rates at 8-10 weeks of therapy with EN vs steroids RR 0.97
- Cochrane review showed an OR of 0.33 favoring steroids
 - Adult and pediatric patients
 - Pediatric studies excluded because of methodology
 - Partial EN vs Full EN
 - Full EN group had remission of 42% vs 15% of partial

Candidates for Therapy

• More successful in treatment in patients with small bowel disease

• Afzal et al showed colonic disease not as amenable to EN
 – 11/12 ileal
 – 32/39 with ileocolonic
 – 7/14 isolated colonic
 – Zachos et al
 • No significant difference

• Acceptable to trial in any Crohn’s disease patients

Formula Composition

• Elemental
• Semi-elemental
• Polymeric formula
 – More palatable
 – Less expensive
 – Perhaps avoid an NG tube
 – ? More weight gain than elemental
• NG vs PO

Growth & Mucosal Healing

- Variable depending on the study
- Height velocity standard deviation scores were significantly increased over steroids at 6 months
- Mucosal healing
 - Fell et al 79% remission in children reaching a polymeric diet with supplemental TGFβ-2 (n=29)
 - Histologic improvement with 8 cases involving small bowel and 2 in the colon.

Protocol

• Duration of therapy
 – 3-12 weeks
 – Mean 8.5 ± 1.7 weeks
 – 81% 6-8 week period of EEN
• Inflammatory markers improve within a week
• Time to remission 11 to 2.5 days
• At least 3-4 weeks are the current recommendation
Re-feeding Syndrome

- Fluid shifts and electrolyte abnormalities including hypophosphatemia and hypokalemia when patient is started on enteral nutrition after being malnourished.
- BMI < -1.5 should be hospitalized and monitored for re-feeding
- Daily electrolytes
- Phosphate and or potassium supplementation
- Gradual re-feeding

Reintroduction of Diet

• Subject of much debate
• UK guidelines
 – Reintroduce food cautiously during the course of 1-3 weeks
• US guidelines
 • Introducing a meal every 2-3 days appears a reasonable strategy.

Success Rates

- Enteral nutrition has been used as monotherapy or in combination with other standard medicines
 - 6-MP, infliximab, and mesalamine
- Hospital for Sick children
 - 28 children NG overnight with regular diet during day
 - 19 patients who discontinued drip feedings
 - 43% vs 79% relapse rate at 1 year

Enteral Therapy

- Enteral therapy offers an alternative to steroids in patients with CD
- Has potential to improve growth and height velocity
- Avoids the side effects of steroids
- Need further research to determine the mechanism and the best regimen

Conclusion

• Growth failure and pubertal delay are multi-factorial in etiology
• Close monitoring of vitamin levels, growth, and height velocity are necessary
• Osteopenia and osteoporosis can occur in IBD patients
• Enteral nutrition is a potential therapy in treatment of Crohn’s disease
Praveen S. Goday, MBBS, CNSC
Associate Professor
Medical College of Wisconsin
Milwaukee, WI

Energy and Protein Metabolism
Components of Energy Needs1-3

- Basal metabolic rate (BMR)
- Diet-induced thermogenesis
- Physical activity (PA)
- Growth

- Energy needs may be affected by
 - Nutritional status, underlying diseases, energy intake, energy losses, age, and gender

Basal Metabolic Rate

- Amount of energy needed for maintaining vital processes of the body, not including activity and food processing

<table>
<thead>
<tr>
<th>BMR</th>
<th>Resting Energy Expenditure (REE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not usually measured</td>
<td>Measured instead of BMR</td>
</tr>
</tbody>
</table>
| Measured
 - In a recumbent position
 - Thermoneutral environment
 - After a 12- to 18-hour fast
 - Just when the individual has awakened before starting daily activities | Measured
 - At rest
 - Thermoneutral environment
 - After an 8- to 12-hour fast
 - Not immediately after awakening |

REE does not differ by more than 10% from BMR

Diet-Induced Thermogenesis$^{5-7}$

- Reflects the amount of energy needed for food digestion and absorption
 - Can be affected by the route of food administration
 - ~10% of daily energy needs

Activity

- Activity is the amount of energy spent for daily movements and PA.
- In older children, activity accounts for a large proportion of total energy expenditure.
- Estimated energy requirements (boys 3-18 years) =
 \[(88.5 - (61.9 \times \text{age})) + \text{PA} \times ((26.7 \times \text{Wt}) + (903 \times \text{Ht})\]

<table>
<thead>
<tr>
<th>Activity Level</th>
<th>Boys Aged 3-18 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td>1</td>
</tr>
<tr>
<td>Moderately active</td>
<td>1.13</td>
</tr>
<tr>
<td>Active</td>
<td>1.26</td>
</tr>
<tr>
<td>Very active</td>
<td>1.42</td>
</tr>
</tbody>
</table>

Growth

- The energy needed to maintain accelerated growth represents 30-35% of the energy requirements in term neonates and is greater in preterm infants.
- Energy cost for 1 g of tissue deposition ranges between 4.9 kcal/g in premature infants and 6.4 kcal/g in adults recovering from anorexia nervosa.

Catch-Up Growth

- Children recovering from malnutrition need extra calories to correct their growth deficits
 - Energy needs may be calculated based on the 50th percentile of weight and height for the actual age, rather than the present weight
 - Or calculation may be based on the actual weight multiplied by 1.2-1.5
- Further caloric needs should be adjusted according to weight and height gain

Estimating Energy Needs11

- Energy needs can be either measured or calculated based on acceptable equations

Energy Estimates (10-18 Years)

• World Health Organization\(^\text{9}\)

 – ♂ \(\text{REE} = 17.5 \times Wt + 651 \)

 – ♀ \(\text{BMR} = 12.2 \times Wt + 746 \)

• Schofield\(^\text{12}\)

 – ♂ \(\text{BMR} = 17.7 \times Wt + 657 \)

 – ♀ \(\text{BMR} = 13.4 \times Wt + 692 \)

• Harris-Benedict\(^\text{13}\)

 – ♂ \(\text{REE} = 66.47 + (13.75 \times Wt) + (5.0 \times Ht) – (6.76 \times age) \)

 – ♀ \(\text{REE} = 655.1 + (9.56 \times Wt) + (1.85 \times Ht) – (4.68 \times age) \)

Estimating Energy Needs (cont’d)11

- The best way to assess energy needs in children is to measure total energy expenditure or, alternatively, REE
- All of these equations have been established in normal children and should be used with caution

REE: Indirect Calorimetry

• When carbohydrate, protein, and fat are oxidized, oxygen is consumed and carbon dioxide is produced
 – The amount of oxygen consumed and carbon dioxide produced per gram of carbohydrate, protein, and fat is constant
 – The amount of calories generated during the consumption of a liter of oxygen (modified by the amount of carbon dioxide produced) is also constant

• If oxygen consumption and carbon dioxide production can be measured, the energy released in the course of the utilization of these gases (or the energy expenditure) can be determined

• All oxygen consumed and all carbon dioxide produced during metabolism is exchanged across the lungs, and these gases can be measured by indirect calorimetry
 – The technique is referred to as indirect, because gas exchange does not actually measure heat production

\[^{14}\text{Ferrannini. Metabolism. 1988;37:287-301.}\]
Protein Metabolism
Protein Content\(^\text{15}\)

- In an adult
 - Skeletal muscle – nearly 50%
 - Other structural tissues (skin and blood) each – ~ 15%
 - Metabolically active visceral tissues (eg, liver and kidney) – total 10%
 - Brain, lung, heart, and bone – ~ 10%

- This distribution varies with age
 - Newborn infant has proportionately less muscle and much more brain and visceral tissue

Protein Reserve

• “Labile protein reserve,” which can be gained or lost from the body, as a short-term store for use in emergencies or to take account of day-to-day variations in dietary intake (1% of total body protein)

• This reserve is unlike the fat and glycogen stores, whose primary roles are for energy use

 — The protein lost during fasting is functional body protein

“Basal” Protein Losses17,18

- Even in the absence of protein consumption, nitrogen continues to be lost
 - Provided that the energy intake is adequate, these “basal” losses are closely related to body weight and BMR

- When the diet is devoid of protein, the efficiency of amino acid recycling is > 90\% for both indispensable and dispensable amino acids

Protein Synthesis

<table>
<thead>
<tr>
<th></th>
<th>Protein Synthesis (g/kg Per Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preterm infant</td>
<td>17.4</td>
</tr>
<tr>
<td>Infant</td>
<td>6.9</td>
</tr>
<tr>
<td>Adult</td>
<td>3.0</td>
</tr>
<tr>
<td>Elderly</td>
<td>1.9</td>
</tr>
</tbody>
</table>

Classification of Amino Acids

<table>
<thead>
<tr>
<th>Indispensable</th>
<th>Conditionally Indispensable</th>
<th>Precursors of Conditionally Indispensable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histidine</td>
<td>Arginine</td>
<td>Glutamine/glutamate, aspartate</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Cysteine</td>
<td>Methionine, serine</td>
</tr>
<tr>
<td>Leucine</td>
<td>Glutamine</td>
<td>Glutamic acid, ammonia</td>
</tr>
<tr>
<td>Lysine</td>
<td>Glycine</td>
<td>Serine, choline</td>
</tr>
<tr>
<td>Methionine</td>
<td>Proline</td>
<td>Glutamate</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>Tyrosine</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Tryptophan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threonine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conditionally indispensable is defined as requiring a dietary source when endogenous synthesis cannot meet metabolic need.

8Adapted from The National Academies Press Web site.
Protein Deficiency20-22

- Protein deficiency adversely affects all organs
- In infants and young children
 - Have harmful effects on the brain and may have longer-term effects on brain function
- Adverse effects on the immune system, resulting in a higher risk of infections
- Affects gut mucosal function and permeability \(\rightarrow \) possible bacterial translocation \(\rightarrow \) septicemia
- Total starvation will result in death
 - In adults in 60-70 days
 - 1000-g neonates in 5 days

20 Pollitt. J Nutr. 2000;130(Suppl):350S-353S.
Assessment of Protein Status23

- Midarm muscle circumference
 - Protein status (unless a myopathy or neuropathy is present)24
- Triceps skinfold
 - Energy nutritional status
- Serum albumin is a poor indicator of protein status
 - Useful prognostically as an indicator of inflammation

24Canadian Paediatric Society. CMAJ. 1994;151:753-759.
Starvation
Pathophysiology25-27

- Carbohydrate metabolism \rightarrow fat and protein catabolism \rightarrow glucose and ketones for energy
- Loss of lean body mass
 - Heart – myocardial atrophy \rightarrow diminished cardiac output
 - Liver wasting \rightarrow decreased protein synthesis and further alteration in metabolism
 - Gastrointestinal \rightarrow causes malabsorption and dysmotility \rightarrow worsens malnourished state and increases risk for infection
 - Kidneys \rightarrow lose ability to concentrate urine \rightarrow diuresis

27McCray, et al. Pract Gastroenterol. 2005;29:26-44.
Pathophysiology (cont’d)²⁵,²⁷

- Intracellular loss of electrolytes
 - Potassium, magnesium, and phosphate
- Insulin secretion decreases and the BMR slows down to 20-25% to conserve energy
 - Body becomes bradycardic, hypothermic, and hypotensive

Classification of Malnutrition

<table>
<thead>
<tr>
<th>Symmetrical Edema</th>
<th>Moderate Malnutrition</th>
<th>Severe Malnutrition</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td></td>
<td>Yes (edematous Malnutrition)</td>
</tr>
</tbody>
</table>

- Weight-for-Height
 - $-3 \leq z\text{-score} < -2$ (70%-79% of median weight-for-height)
 - $z\text{-score} < -3$ (70% of median weight-for-height) (severe wasting)

- Height-for-Age
 - $-3 \leq z\text{-score} < -2$ 85%-89% of median height-for-age)
 - $z\text{-score} < -3$ 85% of median weight-for-age) (severe stunting)

Kwashiorkor Versus Marasmus40-42

- Kwashiorkor should be correctly termed edematous malnutrition
- The precise reason why some children develop one condition versus the other is unclear

40Jahoor, et al. \textit{Am J Clin Nutr.} 2005;82:792-800.
Refeeding Syndrome
Refeeding Syndrome

- Refeeding syndrome (RFS) is a term that describes the metabolic and clinical changes that occur upon aggressive nutritional rehabilitation of a malnourished patient.
Background28,29

- First described after World War II in prisoners of war
 - Cardiac and neurologic abnormalities upon refeeding after long periods of starvation
- Normally occurs within 3-4 days after initiating feeds
- Signs/symptoms include weakness, muscle pain, ataxia, paresthesia, confusion, arrhythmia, seizures
- Phosphate depletion is the hallmark and cause of the majority of symptoms associated with RFS

Pathophysiology
Hypokalemia
Hypomagnesemia
Hypophosphatemia
Thiamine deficiency
Salt and water retention – edema

↑ Glucose uptake
↑ Utilization of thiamine
↑ Uptake of K^+, Mg^{2+} and PO_4^{2-}
protein and glycogen synthesis

↑ Protein and glycogen synthesis

Insulin secretion from the pancreas

Starvation/Malnutrition

Glycogenolysis, gluconeogenesis, and protein catabolism

Protein, fat, mineral, electrolyte, and vitamin depletion – salt and water intolerance

Refeeding (switch to anabolism)

Fluid, salt, nutrients (carbohydrate as a major energy source)

RFS

Patients at Risk of RFS31

- Severe malnutrition
- Anorexia nervosa
- Significant weight loss, including massive weight loss in obese patients
- Prolonged intravenous (IV) therapy/fasting

Most frequent identifier for a pediatric patient at risk for RFS was a calculated body weight < 80\% of ideal body weight.

Serum Abnormalities During Refeeding32,33

- Hypophosphatemia
- Hypokalemia
- Hypomagnesemia
- Glucose abnormalities
- Thiamine deficiency
- Derangements of sodium, nitrogen, and fluid balance

Phosphorus29,34

- Important roles of phosphorus
 - Adenosine triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) generation

- During refeeding
 - Glucose intake leads to insulin surge, pulling phosphorus intracellularly, leading to deficits in both intra/extracellular phosphorus levels
 - Increased demand for and utilization of 2,3 DPG and ATP

- In malnutrition, baseline cardiac muscle atrophy
 - More vulnerable to the deleterious effects of phosphate depletion → ventricular dysrhythmias and sudden death

Potassium and Magnesium31,35,36

- Role of potassium
 - Potassium is driven intracellularly by insulin in response to glucose intake
 - Significant potassium depletion
 - Cardiac arrhythmias (QTc prolongation and torsades de pointes) and cardiac arrest
- Role of magnesium
 - Hypomagnesemia can result in cardiac and neuromuscular dysfunction

Glucose Dysregulation

• After periods of starvation, glucose must be replaced at a slow and intentional rate
 – Replacement of large quantities of glucose quickly can result in hyperglycemia → osmotic diuresis, dehydration, metabolic acidosis, and ketoacidosis

• Other complications
 – Fatty liver disease due to lipogenesis
 – Increased CO$_2$ production, leading to hypercapnia and eventually respiratory failure

Fluid Balance

- Carbohydrate intake leads to a rapid decrease in renal excretion of sodium and water
- If extra fluids are given to maintain “normal” urine output → fluid overload → cardiac failure

Guidelines for Management38

- IDENTIFY PATIENTS AT RISK OF RFS
- Before initiation of feeds, check electrolytes, including potassium, calcium, phosphorus, magnesium, blood urea nitrogen, and creatinine
- Start refeeding at 50-75\% of goal calories and increase to goal over 3-5 days
- Protein does not need to be restricted
- Rehydrate carefully, being careful not to fluid overload
- Monitor potassium, calcium, phosphorus, and magnesium levels frequently during first 4 days and replace appropriately

Baseline Replacements38

<table>
<thead>
<tr>
<th>Nutrition</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium</td>
<td>2-4 mmol/kg daily</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.3-0.6 mmol/kg daily</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.2 mmol/kg daily IV OR 0.4 mmol/kg daily orally</td>
</tr>
</tbody>
</table>

- Multivitamin and mineral supplementation
- To supplement thiamine, zinc, and selenium
- Iron usually not given during initial phase, as increased risk of infection and oxidative stress

Summary: Principles of RFS

- Malnourished patients have altered metabolism
- Patients are severely intracellularly deficient in several electrolytes that are important in basic cell functions, including phosphorus, potassium, and magnesium
- Aggressive refeeding in the initial phase and rehydration can prove deadly if deficiencies are not anticipated, corrected, and monitored carefully
 - *Initial management should focus on correction of metabolic mechanisms and electrolyte repletion prior to initiating aggressive nutritional support*
Questions?
Maria R. Mascarenhas, MBBS
Section Chief, Nutrition
Division of Gastroenterology, Hepatology and Nutrition
The Children’s Hospital of Philadelphia
Philadelphia, PA

Nutrition Assessment & Growth Charts: What do we Really Need to Know
Nutritional Goals

• Well-nourished children with adequate fat, muscle and organ development
• Normal body composition not limited by food intake
• Growth at genetic potential
• Normal pubertal development
Overview

• Nutrition Assessment
 – History and physical examination including physical examination
 – Diet assessment: 24 hr food recall; 3 day diet record
 – Growth measurements
 • Traditional: weight, length/height, head circumference, arm anthropometry (UAC, TSF)
 • Alternative measures: lower leg length, arm span, etc
 – Laboratory tests
 – Bone age
 – DXA: bone health and body composition
 – Resting Energy Expenditure measurements
 – Subjective Global Assessment

• Calculations:
 – Body mass index: Preferred measure of weight for length/height; % Ideal body weight not recommended
 – Upper arm fat area, upper arm muscle area
 – Mid arm circumference/head circumference ratio

• Growth charts
 – NCHS, WHO, CDC, Neonatal (Olsen), disease specific

Proper Anthropometric Techniques

- Use safe, reliable, accurate equipment
- Calibrate equipment regularly
 - daily for stadiometer with a calibration bar
 - weekly for electronic scales with calibration weights
 - weekly for calipers with a calibration bar
 - inspect tape measures for wear
- Reproducible measurements take time and sometimes require two people
Infant Weight

- Infants should be nude (without diapers) to the nearest 0.01 kg
- Children should be in light clothing and without shoes to the nearest 0.1 kg
- Wheelchair accessible scales are available - measure with and without the child in the wheelchair
Height

- Length - to the nearest 0.1 cm in children less than 2 years or in older children who can not stand
- Stature - to the nearest 0.1 cm in children (age ≥ 2 yr) who can distribute weight evenly on both feet and support their weight
- Measure without footwear
- Remove hair ornaments
- Heels, buttocks, shoulders and back of head should be against the stadiometer
- Position head in the Frankfurt plane
- Feet flat and heels together
- Legs straight and knees together
The Frankfurt Plane

• When measuring height, the head is in the Frankfurt plane when the horizontal line from the lower border of the orbit to the auditory meatus (ear canal) is parallel to the floor and perpendicular to the vertical backboard of the stadiometer.

• When measuring recumbent length, the horizontal line is parallel to the fixed head piece and perpendicular to the backboard of the infantometer.
Length

• Position head in the Frankfurt plane and against headboard
• Straighten and stretch legs so that knees are flat and foot is at a 90 degree angle with foot board
• Take three readings and average them
Head Circumference

- Remove hair ornaments
- Secure tape measure above supra-orbital ridge with one hand
- Slide the tape measure evenly around the back of the skull
- Adjust position until the maximum circumference is obtained
- Compress hair and skin to obtain the reading to the nearest 0.1 cm
Mid-Parental Height

• An indicator of genetic potential, so important for identification of growth failure

• Method 1
 – Falkner and Tanner 1986
 – For girls, subtract 13 cm from father’s height
 – For boys, add 13 cm to mother’s height
 – Average parental heights
 – Target height range: ± 10 cm for boys, ± 9 cm for girls

• Method 2
 – Tanner and Whitehead 1970
 – Boys: \(\frac{([\text{father’s height (cm)} + \text{mother’s height (cm)} + 13])}{2} + 8.5 \)
 – Girls: \(\frac{([\text{father’s height (cm)} + \text{mother’s height (cm)} - 13])}{2} + 8.5 \)

3Falkner & Tanner eds. Human Growth. Vol 2; Plenum; 1-22.
Upper Arm Anthropometry

- Good indicator of nutritional status
- Can calculate UAMA and UAFA which muscle mass and fat stores
- Good reference data
- Normal ranges based on NCHS reference data
- Correlate well with whole body measures

Mid-upper Arm Circumference
Triceps Skinfold

- Subject upright with the arm dangling and relaxed
- Measure at the midpoint of the upper arm at the level of the mark, centered over the posterior portion of the arm over the triceps muscle
- Count to 3 and take reading to the nearest 0.1 to 0.5 mm, depending on the calipers
Alternative Measures of Growth

- Upper limb
- Ulnar length
- Knee height
- Arm span
- Sitting height

Growth Charts

• NCHS growth charts; late 70’s; did not adequately represent early childhood growth
 – Longitudinal sample from birth to 3 years
 – Children of European ancestry only from a single community in the US.
 – Statistical approach was too limited to reflect the pattern and variability of growth

• CDC growth charts: 1970 to early 1990s from USA children; cross-sectional data
 – No data from birth to 2 mo,
 – Mixed feeding: 1/3 breastfed for 3 mo; Includes breastfed and formula fed infants, with representative birth weights
 – Multi-ethnic, multi-regional (74% Non-hispanic whites, 14% Non-hispanic blacks, 9% Hispanics, 2% Asian, 1% Native American)
 – LBW infants included, VLBW excluded
 – Added 3rd and 97th percentiles
 – Extended age to 20 years
 – Created BMI charts for assessment of underweight and overweight
 – 85th percentile added to BMI charts to identify “at-risk” of overweight (85th - 95th%)
CDC Growth Charts

2 to 20 years: Boys
Stature-for-age and Weight-for-age percentiles

2 to 20 years: Girls
Stature-for-age and Weight-for-age percentiles

© 2012 NASPGHAN Foundation & NASPGHAN
WHO Multicenter Growth Reference Study (MGRS)

- Breast feeding as norm; Complementary feeding choices
- Non-smoking mothers
- Single term birth, LBW infants not excluded
- Environmental conditions to support unconstrained growth, favoring growth at child’s full genetic potential. SES, <1500 m altitude, medical care
- International sampling (1997-2003): Brazil, Norway, Ghana, Oman, India, United States
- ~ 8500 children
- With and height velocity curves
- Birth to 5 years
 - Longitudinal Sample: 21 visits on weeks 1, 2, 4, & 6, monthly from 2 to 12 months, bimonthly to 24 months
 - Cross-sectional sample: children aged 18-71 months

WHO: Length and Weight Velocity for Boys

Figure A4.4 5th, 25th, 50th, 75th, 95th smoothed centile curves and empirical values: 2-month length velocity for boys

Figure A3.14 5th, 25th, 50th, 75th, 95th smoothed centile curves and empirical values: 2-month weight velocity for boys
Comparison of Growth Charts

Length not significantly different

<table>
<thead>
<tr>
<th>WHO 2006</th>
<th>CDC 2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal growth</td>
<td>Conditions not optimal</td>
</tr>
<tr>
<td>Faster gain 1st 3 mo</td>
<td>Slower gain 1st 3 mo</td>
</tr>
<tr>
<td>Slower gain after</td>
<td>Faster gain after</td>
</tr>
<tr>
<td>If cross % risk obesity</td>
<td>BF infants fall off curves</td>
</tr>
<tr>
<td>intervene PRN</td>
<td>Over Dx underwt/age</td>
</tr>
<tr>
<td>BF infants follow curves</td>
<td>Higher Dx overwt/length</td>
</tr>
<tr>
<td>Lower Dx underwt/age</td>
<td></td>
</tr>
<tr>
<td>Lower Dx overwt/length</td>
<td></td>
</tr>
</tbody>
</table>
How to Calculate Body Mass Index

\[
\text{BMI} = \left(\frac{\text{Weight in Pounds}}{(\text{Height in inches}) \times (\text{Height in inches})} \right) \times 703
\]

\[
\text{BMI} = \left(\frac{\text{Weight in Kilograms}}{(\text{Height in meters}) \times (\text{Height in meters})} \right)
\]

Or use the BMI calculator:
www.cdc.gov/nccdphp/dnpa/bmi/calc-bmi.htm

Or tables:
www.cdc.gov/nccdphp/dnpa/growthcharts/bmi_tools.htm
CDC 2000 Growth Chart: Body Mass Index (Girls for-age)

- Median BMI changes with age
- Distribution changes with age
- Use for monitoring over time
Percent Ideal Body Weight: Height Age

- Limitations:
 - Crosses age and puberty groups to find height age
 - Weight-height relationship is dependent on development
 - Assumes that children at the 50th %tile for height have a mean weight at the 50th %tile for weight

Percent Ideal Body Weight: Height Percentile

• Limitations:
 – Assumes that percentile distributions for height correspond to the percentile distributions for weight
 – Doesn’t reflect real height-weight combinations in children

Discussion

• The two weight-for-height indexes, %IBW and BMI % show good agreement for children of average stature, and particularly for children < 10 years of age
• %IBW underestimates the severity of malnutrition in short children and overestimates in tall children
• %IBW assumes that the weight value corresponds to the same percentile ranking as the child’s height-for-age
 • This assumption does not hold for children with short or tall stature
• BMI % better represents the actual weight and height relationships found for children in the reference population - also reflects the actual SD scores
Growth Charts: Premature Infants

Intrauterine:

Lubcheno 1966: classify AGA, SGA, LGA
Olsen 2010: classify AGA, SGA, LGA; 23-41 wk PMA

Postnatal:

Ehrenkranz 1999: individualized
IHOP 1999: 2-38 months corrected age, LBW, VLBW M/F

Intrauterine & Postnatal:

Babseon/Benda 1976: 26 week PMA-12 mo corr
Fenton 2003: 22wk to 50 wk PMA

Olson Growth Chart

Comparison of Premature Growth Charts

Fenton 2003
- Data set: Canada, Sweden, Australia
- 1982-1996
- Unisex
- n = ~4300
- Historical data
- Post term data CDC
- 22→50 wk PMA
- Primarily Caucasian
- NOT used to classify AGA/SGA/LGA

Olsen 2010
- Data set: USA
- 1998-2006
- Sex specific
- n = ~250,000
- Actual measurements
- Ends at term (41 wks)
- 23-41 wk PMA
- Racially diverse
- Used to classify AGA/LGA/SGA
- Follow growth to term

Disease Specific Growth Charts

- Down syndrome
- Turner’s syndrome
- Noonan’s syndrome
- Cerebral palsy
- Myleomeningocele
- Prader-Willi syndrome
- Neurofibromatosis type 1
- Achondroplasia
- Klinefelter syndrome
- William’s syndrome
- Duschene’s Muscular Dystrophy

Bone Age

- Gruelich and Pyle 1950
- Tanner and Whitehouse 1983-
- Read by radiologist and endocrinologist
- drawbacks

Laboratory Tests

- Blood
 - CBC with differential
 - Electrolytes: BMP; ionized calcium, magnesium, phosphorus
 - Protein status: albumin, prealbumin, BUN
 - Minerals: ferritin, iron, TIBC, transferrin, transferrin saturation, serum zinc
 - Vitamins: retinol, retinyl palmitate, 25 hydroxy vitamin D, serum or RBC folate, PIVKA11, alpha-tocopherol levels, Vitamin C, serum B12, MMA
 - Trace elements
 - Others: carotene, lipid panel, TSH, free T4, IGF BP3, somatomedin C, CRP, PTH, triene to tetraene ratio

- Urine: creatinine/height index, calcium/creatinine ratio, protein
- Stool: coefficient of fat absorption
DXA: Dual Energy X-ray Absorptiometry

- Age 3 years and older
- Z-score vs. T-score
- Body composition
- Other scans: forearm, distal femur
- Follow bone health over time
- PQCT
Classification of Nutritional Status

- Need multiple growth data points
- In general: weight falls off before length; last parameter to suffer is head circumference
- Can have crossing of percentiles between 9 and 18 months
- Overweight: BMI > 85th; Obese: BMI > 95th.
- Malnourished: BMI < 5th or < 10th
- Use WHO weight velocity charts in infants
- Classifications of malnutrition: Waterlow, WHO, marasmus, kwashiorkor
- Subjective global assessment
- Frequency of growth measurements: AAP Recommendations for preventive pediatric health care
Micronutrients

• Vitamins:
 – Fat Soluble:
 • A, D, E, K
 – Water soluble:
 • thiamine, riboflavin, niacin, pyridoxine, cobalamin, folate, vitamin C, pantothenic acid, biotin

• Minerals:
 – calcium, phosphorus, magnesium, iron

• Trace elements:
 – zinc, copper, manganese, selenium, iodine, chromium, cobalt, molybdenum, arsenic, nickel, silicon, vanadium, aluminum
Fat-Soluble Vitamins

- Intestinal absorption dependent of pancreatic enzymes & bile acids
- Need normal fat digestion, absorption and transport
- Deficiency seen in CF, celiac disease, SBS, ileal disease, cholestatic liver disease or inadequate intake or light exposure (D)
Water-Soluble Vitamins

- Deficiencies rare in formula fed infants & in breast fed infants of mothers on a normal diet
- Limited whole body stores & lack of endogenous synthesis: risk of deficiency
- Inborn errors of metabolism
- Predisposing conditions: celiac disease, Crohn’s disease, CF, food refusal, anorexia nervosa, HIV
Trace Elements

• Components of many enzyme systems & integral components of metalloenzymes
• Cofactors for enzymes activated by metal ions
• Effects of deficiency are most severe during periods of rapid growth – important to pediatricians
• Trace element shortage in parenteral nutrition
• 13 trace elements: iron, zinc, copper, fluoride, iodine, selenium, manganese, chromium, cobalt, molybdenum, nickel, silicon, vanadium
Micronutrient Deficiencies: Vitamins

<table>
<thead>
<tr>
<th>Vitamin</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>Night blindness, xerophthalmia, keratomalacia, poor bone growth, impaired immunity, follicular hyperkeratosis</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>Rickets, osteomalacia</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Hemolytic anemia, hyporeflexia, spinocerebellar & retinal degeneration</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>Bleeding, poor bone health</td>
</tr>
<tr>
<td>Thiamine</td>
<td>Beriberi, neuritis, edema, cardiac failure, hoarseness, anorexia, restlessness, aphonia</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>Photophobia, cheilosis, glossitis, poor growth, corneal vascularization</td>
</tr>
<tr>
<td>Niacin</td>
<td>Pellagra, dermatitis, diarrhea, dementia</td>
</tr>
<tr>
<td>Pyridoxine</td>
<td>Depression, fatigue, hypotension, muscle weakness, abdominal pain</td>
</tr>
<tr>
<td>Cobalamin</td>
<td>Pernicious anemia, neurologic deterioration</td>
</tr>
<tr>
<td>Folate</td>
<td>Megaloblastic anemia, impaired cellular immunity, irritability, paranoid behavior, neural tube defects</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Bleeding gums, perifolicular hemorrhage, scurvy</td>
</tr>
</tbody>
</table>
Micronutrient Deficiencies: Minerals

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>Tetany; osteopenia, seizures</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>Osteopenia</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Seizures</td>
</tr>
<tr>
<td>Iron</td>
<td>Anemia, neurological and developmental (cognitive and motor) deficits, increased absorption of Pb and Mn</td>
</tr>
</tbody>
</table>
Micronutrient Deficiencies: Trace Elements

<table>
<thead>
<tr>
<th>Trace element</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>Anorexia, altered taste, growth retardation, delayed puberty, impaired wound healing, skin lesions</td>
</tr>
<tr>
<td>Copper</td>
<td>Anemia, growth retardation, osteoporosis, neutropenia, decreased pigmentation</td>
</tr>
<tr>
<td>Manganese</td>
<td>In animals growth retardation, ataxia, bone abnormalities</td>
</tr>
<tr>
<td>Selenium</td>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>Chromium</td>
<td>Impaired glucose utilization</td>
</tr>
<tr>
<td>Iodine</td>
<td>Goiter, impaired mental function, developmental delay</td>
</tr>
</tbody>
</table>
Summary

• There is no single direct measure of nutritional status
• Growth chart with multiple data points is very informative
• Need to use multiple measures including subjective global assessment
• Use age appropriate growth charts: WHO, CDC and Olsen
• Look for possible micronutrient deficiencies in at risk patients
Following Slides for Reference Only
Vitamin A

- **Sources**: fortified milk, liver, egg, cheese, yellow fruits and vegetables
- **Deficiency**: night blindness, xerophthalmia, keratomalacia, pigmentary retinopathy, poor bone growth, impaired resistance to infection (measles), follicular hyperkeratosis
- **Assessment**: serum retinol and RBP; retinyl esters for toxicity
- **At risk**: malnutrition, malabsorption
- **Treatment**: water soluble preparations in patients with fat malabsorption
Vitamin D

• Sources: fatty fish, liver, eggs, fortified milk, OJ and cereals; best source is the sun
• Deficiency:
 o Usually asymptomatic
 o Hypocalcaemia, hypophosphatemia, tetany
 o Rickets: craniotabes, enlarged costochondral junctions, bowing of legs, enlarged wrists
 o Osteomalacia - vague symptoms, bone pain, achiness, muscular weakness, feeling of heaviness in the legs, chronic musculoskeletal pain, fatigue
 o Associated with cancer, cardiovascular disease, hypertension, stroke, diabetes, Multiple Sclerosis, Rheumatoid Arthritis, IBD, Periodontal disease, macular degeneration, depression, propensity to fall, influenza/other winter-time infections, Aatism
• Assessment:
 o Calcium, phosphorus, intact PTH
 o Vitamin D (25-OH) level depends on: latitude, season, air pollution, atmospheric ozone, cloud cover, sunblock, obesity, melanin content, clothing covering the body
• At risk: limited sun exposure, liver disease, CF, pancreatic disease, IBD
• Treatment: cholecalciferol, ergocalciferol preparations
Vitamin E

• Requirement increased by large amount of PUFA
• Sources: sardines, green leafy vegetables, vegetable oils, wheat germ, whole grains, butter, liver, egg yolk
• Deficiency:
 – hemolytic anemia in preterm infants, hyporeflexia spinocerebellar and retinal degeneration; peripheral neuropathy, proximal muscle weakness, ophthalmoplegia, cognitive and behavioral abnormalities
 – Familial isolated vitamin E deficiency: congenital deficiency of a hepatic transport protein.
 – Neurological effects (ataxia) may be irreversible if untreated
• Assessment: serum alpha-tocopherol, ratio of serum alpha tocopherol to total lipids
• At risk: biliary atresia, chronic cholestatic liver disease, CF, Pancreatic disease
• Treatment: water soluble form best; may improve absorption of other fat soluble vitamins & drugs if given concurrently
Vitamin K

- Synthesized by intestinal bacteria; antagonized by Coumadin, salicylates & some antibiotics
- Sources: cow milk, green leafy vegetables, pork, liver, soybean oil
- Assessment: PT, Factor levels: 2,7,9,10, PIVKA II
- Deficiency:
 - bleeding, low BMD
 - Newborns: bleeding from GIT, umbilicus, circumcision; increased risk of hemorrhagic disease due to vitamin K deficiency (poor placental transport of vitamin K, decreased number of gut bacteria)
- At risk: newborns, fat malabsorption, chronic liver disease, highly restricted diets, after bariatric surgery, CF, cholestatic liver disease
- Treatment:
 - All newborns get prophylactic dose
 - Maternal vitamin K administration may prevent IVH in preterm infants
Thiamine

- Sources: enriched cereals & breads, lean pork, whole grains, legumes, in small amounts in most nutritious foods
- Causes:
 - Inadequate intake, malabsorption, excessive loss, defective transport,
 - Mother at risk for deficiency: poor thiamine intake, alchoholic, GI disease, hyperemesis gravidarum, HIV infection
- Assessment: transketolase activation test, TPP levels
- At risk: infants born to deficient mothers, food fads, anorexia nervosa, gastric bypass surgery, chronic dialysis, congestive heart failure, chronic TPN
- Deficiency
 - Beriberi:
 - Dry: progressive, symmetrical peripheral neuropathy resulting in increasing weakness, muscle wasting, difficulty walking, ataxia, painful paresthesias & loss of DTR
 - Wet: cardiac failure and edema
 - Infantile: breast fed child whose mother has a subclinical thiamine deficiency. Sudden onset of shock in a previously well child between 2-3 months of age & preceding by hoarse, weak cry, poor feeding and vomiting
 - Wernicke encephalopathy: ophathlamoplegia, nystagmus, ataxia in addition to altered consciousness. Can be seen in infants & children
 - Other: hoarseness, anorexia, restlessness, aphonia
- Treatment
Riboflavin

• Sources: meat, dairy products, eggs, green vegetables, whole grains, enriched breads & cereals
• Deficiency:
 – Pure deficiency: rare. Accompanied by other B complex vitamins deficiencies because of riboflavin's role in the metabolism of folate, pyridoxine & niacin
 – Mild: very non specific symptoms.
 – Severe: pharyngitis, angular stomatitis, photophobia, cheilosis, glossitis, or magenta tongue, seborrheic dermatitis in nasolabial folds, flexures of extremities ad genital areas, corneal vascularization, poor growth
 – Thyroid and adrenal insufficiency can impair synthesis of riboflavin cofactors & may precipitate the deficiency
• Assessment: 24 hour urine for riboflavin; RBC glutathione reductase activity coefficient
• At risk: poor socioeconomic status with decreased meat or dairy intake; breast fed infants after weaning, neonates undergoing phototherapy, PEM, celiac disease, SBS, CF
• Treatment
Niacin

- Sources: milk, eggs, poultry, meat, fish, whole grains, enriched cereals & grains
- Assessment: 24 hour urine collection of N1-methylnicotinamide, RBC NAD & NADP concentrations
- At risk: malnourished individuals in developing countries, homeless, Crohn’s disease, anorexia nervosa, INH therapy, long term anticonvulsants
- Deficiency: observed only with use of antagonists
 - Pellagra or rough skin in Italian
 - Dermatitis, diarrhea, dementia
 - Skin: painful erythema in sun exposed areas which progress to exudative rash – vesicle and bullae formation. Affected skin becomes rough hard and scaly. Hair and nails are spared
 - GI: glossitis, angular stomatitis, cheilitis, diarrhea 30-50 % of patients
 - Neuro: insomnia., fatigue, nervousness, irritability, depression, mental dullness, apathy, memory impairment & then dementia to death
 - Hartnup disease: disorder of neutral amino acids transport – malabsorption of tryptophan
- Treatment:
Pyridoxine

- Sources: liver, fish, meat, whole grains, legumes, potatoes, banana, eggs
- Deficiency:
 - Isolated deficiency is rare because its metabolism is dependant on adequate levels of riboflavin, niacin and zinc
 - Early 1950s: no pyridoxine in infant formulas – seizures
 - Clinical: irritability, depression, dermatitis, glossitis, angular stomatitis, cheilosis, peripheral neuritis
 - Infants: irritability, convulsions, microcytic anemia
 - Pyridoxine dependant seizures: autosomal recessive disorder intractable seizures due to decreases GABA production
 - Vitamin B6 responsive anemia – microcytic hypochromic
 - Homocystinuria
- Assessment:
 - 24 hour urine for 4-pyridoxic acid
 - Plasma PLP levels
- At risk: malnourished children in developing countries, childhood leukemia & chronic renal failure
- Treatment
Cobalamin and Folate

• Cobalamin
 – Sources: meat, fish, poultry, cheese, milk, eggs, vitamin B12 fortified soy milk
 – Deficiency: Pernicious anemia: macrocytic megaloblastic anemia, Neurological deterioration: ataxia, muscle weakness, spasticity, incontinence, hypotension, vision problems, dementia, psychoses mood disturbances, Methyl-malonic acidemia, Neural tube defects in infants born to deficient mothers, Number of inborn errors of metabolism that are B12 responsive, Imerslung-Rasbeck syndrome: familial selective B12 malabsorption
 – Assessment: elevated homocystine levels, MMA levels, cobalamin levels
 – At risk: breast fed infants of vegan mothers, infants on macrobiotic diets, gastric or ileal resection, PKU
 – Treatment: not always reversed by parenteral B12; use parenteral administration if having malabsorption
 – Interference from OCP, antiepileptic drugs & alcohol

• Folate
 – Sources: meats, liver, leafy green vegetables, oranges, cantaloupe, seeds, fortified breads and cereals
 – Supplemental folate is better absorbed than folate naturally present in food
 – Deficiency: Megaloblastic anemia, Impaired cellular immunity, Irritability, paranoid behavior, Neural tube defects in fetus of pregnant women; Cerebral folate deficiency: auto- antibodies prevent the transfer of folate from the plasma to the CSF
 – Assessment: serum or plasma folate (short term) or RBC folate (long term)
 – At risk: Crohn’s disease, HIV infection, chronic dialysis
 – Treatment: oral daily supplements
Vitamin C

- Sources: papaya, citrus fruits, tomatoes, cabbage, potatoes, cantaloupe, strawberries
- Deficiency
 - osmotic diarrhea
 - bleeding gums
 - perifollicular hemorrhage
 - frank scurvy: painful bones, arthropathy
- Assessment: WBC ascorbate levels measures tissue reserves
- At risk: children who eat very few fruit and vegetables; LBW infants are born to deficient moms
- Treatment: oral, IM or IV
Pantothenic Acid and Biotin

• Biotin
 – Deficiency only with large intake of raw egg white (avidin irreversibly binds biotin) or during TPN
 – Action: coenzyme: acetyl-coA carboxylase & other carboxylases
 – Sources: liver, egg yolk, soybeans, milk, meat
 – Deficiency: seen in kids given biotin free TPN. hypotonia & severe exfoliative dermatitis, anorexia, nausea, pallor, alopecia, myalgias, parasthesias
 – Assessment: urine collection
 – At risk: biotin free TPN, children given large amounts of undercooked eggs, chronic anti-convulsants, inborn errors of metabolism

• Pantothenic acid
 – Sources: organ meats, yeast, egg yolk, fresh vegetables, whole grains, legumes
 – WW II prisoners: toes numb and painful burning sensation in their feet relieved by pantothenate
 – Deficiency: headache, fatigue, insomnia, Paresthesias of hands & feet, muscle weakness, abdominal pain, Increased sensitivity to insulin
 – Treatment
Zinc Deficiency

• Absorbed in the intestine by active transport
• Acrodermatitis enteropathica: mutation in ZIP4 zinc transporter
• Overdosing of zinc lead to copper deficiency
• Zinc in human milk is more bioavailable than in formula
• Sources: oysters, liver, meat, cheese, legumes, whole grains
• Clinical: anorexia, hypogeusia, retarded growth, delayed sexual maturation, impaired wound healing, skin (acro-orofacial) lesions, affects prenatal growth, increased susceptibility to infections
• Assessment: plasma or serum zinc; hair zinc concentration
• At risk: preterm, CF, Crohn’s disease sickle cell disease
• Treatment: supplement with 1 mg/kg/day; improvement in rash in 4-5 days
Copper Deficiency

- Sources: shellfish, meat, legumes, nuts, cheese
- Assessment: serum copper and ceruloplasmin, hair copper, RBC superoxide dismutase; infection raises levels
- At risk: preterm, rapid growth, malabsorption, malnutrition
- Deficiency
 - Hypochromic anemia: low concentrations of ceruloplasmin or ferroxidase needed to incorporate iron into HB
 - Retarded growth, osteoporosis, neutropenia, depigmentation hair and skin, impaired immunity
 - Menke’s syndrome: soon after birth, pallor, anemia, steely hair and progressive neurological deterioration; defective protein is a P type adenosine triphosphate ATP7A and copper accumulates in the enterocyte
 - Aceruplasminemia; normal copper status, severe iron deficiency due to decreased release of iron from stores
 - Iron absorption is decreased in copper deficiency due to decreased activity of copper dependant ferroxidase in the intestine which helps with iron uptake
- Treatment
Trace Elements: Manganese and Selenium

• Manganese
 – Sources: nuts, whole grains and tea
 – Deficiency:
 • Humans: none
 • Animals: growth retardation, ataxia of newborn, bone abnormalities, reduced fertility
 – Assessment: blood & serum levels
 – Treatment

• Selenium
 – Sources; seafood meat, whole grains
 – Children with goiter: Se deficiency limits response to iodine supplementation
 – Deficiency: Keshan cardiomyopathy (? low Se in soil); not supplemented chronic TPN; macrocytosis and loss of hair and skin pigmentation
 – Assessment: serum glutathione peroxidase (short term status, RBS glutathione peroxidase (long terms status) serum Se
 – At risk: LBW, HIV infection
 – Treatment
Trace Elements: Chromium and Iodine

• Chromium
 – Sources: meat, cheese, whole grains, brewer’s yeast
 – Deficiency:
 • Humans: impairment of glucose utilization; seen in chronic TPN
 • Animals: impaired growth, disturbances protein & lipid metabolism
 – Assessment: only reliable indicator is demonstration of beneficial effect of chromium supplement
 – At risk: PCM
 – Treatment

• Iodine
 – Deficiency: uncommon in USA due to supplementation
 – Children with goiter do not respond to iodine supplementation until given iron
 – Need adequate selenium status to respond to iodine supplementation
 – Treatment
Robert J. Shulman, MD
Professor of Pediatrics
Baylor College of Medicine
Children’s Nutrition Research Center
Texas Children’s Hospital
Houston, TX

Parenteral Nutrition
Parenteral Nutrition – History¹,²

• Late 1930s
 – **Positive nitrogen balance with infusion of protein hydrolysates in children**

• 1944
 – **Glucose, casein, olive oil/lecithin preparation in 5-month-old marasmic infant for 5 days via peripheral vein**

• 1961
 – **Safe intravenous (IV) fat preparation**

• 1966
 – **Administration of hypertonic dextrose/amino acid (AA) solutions via central lines in beagle puppies**

• 1968
 – **First clinical report of successful use of parenteral nutrition (PN) in infant with short bowel syndrome (SBS), resulting in normal growth and development³**

Indications and Route
PN – Indications

• Always use enteral nutrition (EN) whenever possible

• Use PN only when
 – *Unable to meet nutritional requirements via the gastrointestinal (GI) tract*
 – *Bowel dysfunction resulting in inability to tolerate EN for*
 • 1-3 days in infants
 • 4-5 days in children and adolescents
 • 7-10 days in adults

• PN should ONLY be used when there is NO reason to use EN

Nutrition Assessment

Functional GI Tract

Yes

Enteral Nutrition

GI Function

Normal

Standard Nutrients

Nutrient Tolerance

Adequate
Progress to Oral Feedings

Compromised

Specialty Formulas

Short-term Nutrients

Peripheral PN

Inadequate
PN Supplementation

Progress to Total Enteral Feedings

No

Parenteral Nutrition

Short-term

Peripheral PN

GI Function Returns

Yes

Progress to More Complex Diet and Oral Feedings as Tolerated

Inadequate
PN Supplementation

Progress to Total Enteral Feedings

No

Long-term or Fluid Restriction

Central PN

Gastrostomy

Jejunostomy

Adequate
Progress to Oral Feedings

Inadequate
PN Supplementation

Progress to Total Enteral Feedings

• Very low birth weight infants (birth weight < 1500 g)
• Inability to tolerate enteral feeds (eg, paralytic ileus, chemotherapy, radiation enteritis)
• Small bowel obstruction
• Radiation enteritis
• GI fistula
• Hemodynamic instability with high risk of mesenteric ischemia (eg, necrotizing enterocolitis in preterm infants, extracorporeal membrane oxygenation, shock, acute critical illness)
• Conditions associated with intestinal failure (eg, SBS, diarrhea with irreversible malabsorption, pseudo-obstruction, intestinal epithelial disorders [microvillus inclusion disease, tufting enteropathy])
Inflammatory Bowel Disease – Considerations for Use of PN

- Intolerance to enteral feeds
- Restricted enteral intake/severe perianal disease
- Fistulas, perforation, and intra-abdominal abscesses
- Toxic megacolon
- Intestinal obstruction
- Perioperative nutrition rehabilitation
- SBS
- Unable to sustain growth on enteral feeds
SBS/Intestinal Failure – Nutritional Considerations I

- PN should be used to meet energy needs when EN is insufficient or cannot be tolerated
- Start trophic enteral feeds when possible and advance as tolerated
- Cycle PN regimen when possible
- Energy needs to be provided for treatment of malnutrition and to promote normal growth
 - Prediction equations may be helpful, but the patient’s response is the best guide to adjusting caloric intake
 - Avoid overfeeding and provide adequate calorie intake for normal linear growth

PN – Route of Administration4,6,7

• Central versus peripheral venous access
 – Defined by where the tip of the catheter is positioned
• Central
 – Tip is positioned in the superior or inferior vena cava or right atrium
 – Types: peripherally inserted central catheter, tunneled and nontunneled central catheters, umbilical venous catheter, implanted port
• Peripheral
 – Tip is not positioned in the superior or inferior vena cava or right atrium
 – Type: peripheral IV catheter
• Intradialytic PN

4ASPEN Board of Directors and the Clinical Guidelines Task Force. JPNJ Parenter Enteral Nutr. 2002;26(Suppl):1SA-138SA.
PN – Peripheral Versus Central

Peripheral PN
- Used for < 2 weeks
- Patient has no fluid restriction and nutrient needs can be met
- Osmolality 900-1000 mOsmol/L
 - Maximum 10-12.5% dextrose

Central PN
- Used for > 2 weeks
- Patient is fluid-restricted and nutrient needs cannot be met by peripheral PN
- Peripheral access limited
- Can use hypertonic solutions

Components
Components of PN

- Nonprotein energy
 - Carbohydrates (dextrose)
 - Fat (lipid)
- Protein (AAs)
- Electrolytes
- Minerals, vitamins, trace elements
- Water
- Miscellaneous: heparin, medications (i.e., ranitidine)
Components of PN – Macronutrient Guidelines\(^5,9,10\)

<table>
<thead>
<tr>
<th>Weight/Age</th>
<th>Daily Recommendation</th>
<th>Weight/Age</th>
<th>Daily Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight/Age</td>
<td>Daily Recommendation</td>
<td>Weight/Age</td>
<td>Daily Recommendation</td>
</tr>
<tr>
<td>Weight</td>
<td></td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>10-20 kg</td>
<td>1-2.5 g/kg</td>
<td>> 10 kg or 1-10 years</td>
<td>1-2 g/kg</td>
</tr>
<tr>
<td>> 20 kg</td>
<td>0.8-2 g/kg</td>
<td>11-17 years</td>
<td>0.8-1.5 g/kg</td>
</tr>
</tbody>
</table>

Energy/Caloric

<table>
<thead>
<tr>
<th>Weight/Age</th>
<th>Daily Recommendation</th>
<th>Weight/Age</th>
<th>Daily Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>10-20 kg</td>
<td>60-90 kcal/kg</td>
<td>> 1-7 years</td>
<td>75-90 kcal/kg</td>
</tr>
<tr>
<td>> 20 kg</td>
<td>30-75 kcal/kg</td>
<td>> 7-12 years</td>
<td>50-75 kcal/kg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 12-18 years</td>
<td>30-50 kcal/kg</td>
</tr>
</tbody>
</table>

Fluid

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>> 10-20 kg = 1000 mL + 50 mL/kg > 10 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>> 20 kg = 1500 mL + 20 mL/kg > 20 kg</td>
</tr>
</tbody>
</table>

Carbohydrates (Dextrose)

<table>
<thead>
<tr>
<th>Weight/Age</th>
<th>Daily Recommendation</th>
<th>Weight/Age</th>
<th>Daily Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>10-20 kg</td>
<td>8-28 g/kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 20 kg</td>
<td>5-20 g/kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IV Fat Emulsion

<table>
<thead>
<tr>
<th>Weight/Age</th>
<th>Daily Recommendation</th>
<th>Weight/Age</th>
<th>Daily Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td></td>
<td>Weight</td>
<td></td>
</tr>
<tr>
<td>> 10 kg</td>
<td>1-3 g/kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Carbohydrates should comprise 40% to 60% of total caloric intake.

The minimum fat requirement is determined by essential fatty acid need, and the daily maximum is 50% to 60% of energy.

AA intake is more important to enhancing protein retention than is energy intake. Doubling AA intake vs. energy intake leads to greater protein retention.

Components of PN – Dextrose

- Major source of nonprotein calories is D-glucose
- Typically provides 40-55% of caloric intake
- Monohydrate form provides 3.4 kcal/g
- Stepwise increase to allow appropriate response of endogenous insulin, preventing glucosuria and osmotic diuresis
- Glucose increases osmolality (risk of phlebitis)

Glucose Oxidation Is Limited – I^{12}

Functions of protein

- Provides structure (eg, muscle)
- Provides function (eg, enzymes, transport proteins)
- Acts as a nitrogen donor to other compounds (eg, nucleic acids, carnitine, taurine)

Protein should not serve as an energy source

Protein requirements vary by age and disease state

Infants

- Infants need conditional AAs, like histidine, taurine, and cysteine, because of immature synthetic abilities
- Infant AA solutions are based on the serum AA pattern seen in breastfed infants

Excess protein intake leads to hyperazotemia

Components of PN – Fat5,13,14

- Fat
 - Concentrated source of calories
 - In children, only use 20% emulsion (provides 2 kcal/mL)
 - Currently, in the United States, lipid solutions are composed of triglycerides from soybean oil and safflower and emulsified by egg yolk phospholipid
- Minimum of 1-2% of calories from a combinations of linoleic and linolenic acid to meet essential fatty acids (EFA) needs (met with 0.5-1.0 g/kg per day fat)
 - Serum triene:tetraene ratio is reflective of EFA status
 - A triene:tetraene ratio < 0.2 is generally considered to reflect EFA sufficiency
- Infused over 24 hours to maximize tolerance
- Monitor triglycerides to assess tolerance

IV Fat Clearance\(^\text{15}\)

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Fractional Removal Rate (% of Arterial Concentration)</th>
<th>Removal (% Infused)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myocardium</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>Splanchnic</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Liver</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Skeletal Muscle</td>
<td>10</td>
<td>47</td>
</tr>
<tr>
<td>Subcutaneous Tissue</td>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>

Comparison of Lipid Emulsions*16

<table>
<thead>
<tr>
<th>Fatty Acids</th>
<th>Soy</th>
<th>Fish Oil</th>
<th>SMOF†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linoleic</td>
<td>50</td>
<td>4</td>
<td>37</td>
</tr>
<tr>
<td>Linolenic</td>
<td>9</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Oleic</td>
<td>24</td>
<td>15</td>
<td>55</td>
</tr>
<tr>
<td>Eicosapentaenoic</td>
<td>0</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Docosahexaenoic</td>
<td>0</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Arachidonic</td>
<td>0.1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

*Approximate % total fatty acids
†Soybean oil, medium chain triglycerides, olive oil, and fish oil

Fish Oil Emulsion17

- Le HD, et al.
 - 79 infants with PN-associated cholestasis (PNAC) on soy emulsion switched to fish oil emulsion
 - Median duration of soy emulsion was 91 days
 - After median of 18 weeks, median direct bilirubin 5.4 → 0.2 mg/dL
 - Serum triglyceride, total cholesterol, low-density lipoprotein, very low-density lipoprotein fell significantly (52%, 17%, 24%, 48%, respectively)
 - Decline in C-reactive protein: 1.3 → 0.2 mg/dL during fish oil emulsion treatment

Suggested Doses for Lipids\(^4,5\)

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Starting Dose (g/kg/day)</th>
<th>Maximum Dose (g/kg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonate/Infant</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Children</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Adolescent/Adult</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

Dose of Lipid

• Diamond IR, et al.18

 – 152 postoperative (abdominal) infants

 – *Predictors for development of direct bilirubin 5.9 mg/dL 1 year later*

 – *Days of AA > 2.5 mg·kg-1·d-1 and lipid > 2.5 mg·kg-1·d-1 and sepsis episodes*

• Cober MP and Teitelbaum DH19

 – Reduced lipid intake if direct bilirubin ≥ 2.5 mg/dL

 – Compared with historical cohort

 – Downward trend in bilirubin for reduced lipid group ($P = 0.046$)

Calcium and Phosphorus5,20

- There are limitations to amounts of Ca and P that can be supplied in PN
- Ca and P can precipitate, depending on the amounts added to the PN solution
- Cysteine lowers pH and may be added to neonate/infant PN (by using TrophAmine®) to increase solubility of Ca and P

Components of PN – Trace Elements

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Multitrace®-4 (per mL)</th>
<th>Multitrace®-4 (per mL)</th>
<th>Multitrace®-5 Concentrate (per mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonatal</td>
<td></td>
<td></td>
<td>(Adolescent/Adult)</td>
</tr>
<tr>
<td>Zinc (as Sulfate)</td>
<td>1.5 mg</td>
<td>1 mg</td>
<td>5 mg</td>
</tr>
<tr>
<td>Chromium (as Chloride)</td>
<td>0.85 mcg</td>
<td>1 mcg</td>
<td>10 mcg</td>
</tr>
<tr>
<td>Selenium (as Selenious Acid)</td>
<td>None</td>
<td>None</td>
<td>60 mcg</td>
</tr>
<tr>
<td>Copper (as Sulfate)</td>
<td>0.1 mg</td>
<td>0.1 mg</td>
<td>1 mg</td>
</tr>
<tr>
<td>Manganese (as Sulfate)</td>
<td>25 mcg</td>
<td>25 mcg</td>
<td>0.5 mg</td>
</tr>
</tbody>
</table>

Components of PN – Designing a Regimen\(^5\)

- Estimate energy needs
 - Based on age of patient, disease state, severity of illness, activity level, and need for catch-up growth
- Calculate fluid needs
- Estimate protein needs
- Obtain baseline laboratory values of serum electrolytes, minerals, and triglycerides
- Start with 10% dextrose solution
- Can start with IV lipid at lowest end of dose range and make sure triglyceride levels are within acceptable levels when increasing dose
- Advance regimen to goal caloric and fat intake based on laboratory testing and other clinical evidence

Components of PN – Energy Requirements13,22

- Common methods to calculate calorie needs include World Health Organization (WHO) and Dietary Reference Intake (DRI) equations
 - DRI equations provide guidelines from birth–adulthood with a need to use activity/adjustment factors
 - WHO equations provide guidelines from 1 year–adulthood
 - Energy prediction equations should be used as starting guidelines and PN caloric intake adjusted based on response to therapy
- Energy needs
 - In the first year of life are expressed in kcal/kg per day
 - Beyond the first year of life are expressed as kcal/kg per day or kcal per day
- Measure energy expenditure using indirect calorimetry when possible
- Birth through 1 year: 80-110 kcal/kg per day

22Lloyd DA. Nutrition. 1998;14:101-104.
TPN Calculator

- Put together by Robert Rothbaum at Washington University
- http://tpn.wustl.edu/calculator.html
- Does not account for catch-up calorie needs
Components of PN – Minerals and Acid-Base Balance\(^5\)

- Determining starting doses
 - *Use accepted guidelines*
 - *Consider baseline electrolyte and mineral levels*
 - *Consider other sources of electrolytes and minerals (IV fluids, other sources of electrolytes and minerals)*

- Check laboratory values within 24 hours of initiation of PN and adjust levels accordingly
 - *Consider other additional electrolyte and mineral supplements patient received and adjust PN dosages accordingly*

- Acid-base abnormalities can be treated by addition or removal of sodium or potassium acetate
 - *Acetate = bicarbonate precursor*
 - *Bicarbonate contraindicated in PN*
 - Ca/P precipitation
 - High Na load

Inflammatory Bowel Disease – Nutritional Considerations5,23,24

- Energy needs vary based on patient’s disease and nutritional status
- Prediction equations provide only guidance
- Protein needs
 - *In general, needs are similar to those for healthy children*
 - *Patients with diarrhea, malabsorption, fistulas, and malnutrition may require increased protein*
- Zn
 - *Needs may be increased if there is malnutrition, diarrhea, high output stomas, and SBS*
- Fe
 - *Fe deficiency is more common in inflammatory bowel disease, due to decreased intake and increased losses; more common in Crohn’s disease compared to ulcerative colitis*
- Fluid
 - *Needs should be individualized*
- Vitamin D deficiencies can occur
 - *Measure levels, taking into account the time of year and location of the patient*
 - *Supplement as required*

SBS/Intestinal Failure – Nutritional Considerations II

• Increased requirements in patients with GI losses
 – Fluid
 – Zn
 – Bicarbonate – needs to be replaced as acetate in PN
 – NA (especially in ileostomies): patients will not grow until adequately supplemented; urine Na measurements can be used to guide Na replacement
 – Fe needs increased due to GI blood loss and malabsorption, especially if patient has loss of proximal small bowel

Cycling
PN – Cycling PN25,26

- Daily administration of PN over a period of time which is < 24 hours (eg, 8-22 hours cycle); average 10-12 hours
- Prerequisite
 - Stable regimen
 - Ability to handle large volume of fluid and nutrients over a short amount of time
 - The smaller the infant, the less tolerant they may be of the cycle
- Putative benefits
 - Decreased hepatic steatosis
 - Allows for a more normal daytime routine
 - Increases mobility of the patient
- Wean PN rate for the last hour by decreasing the rate by 50%. Consider starting the PN solution at 50% of the goal rate for first hour.
- Check serum glucose 30-45 minutes after stopping PN with every change in length of cycle. Monitor for glucosuria during cycle.

Cycling PN

• 2 studies suggest cycling PN beneficial against PNAC
 • Hwang TL, et al.27
 – Adults switched to cyclic when bilirubin increased
 – Direct bilirubin increased in those on continuous
 – If direct bilirubin around 10 mg/dL, there was no benefit
 • Jensen AR, et al.28
 – Retrospective review of 107 infants with gastroschisis

Monitoring and Complications
PN – Monitoring

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>With Every Change in PN</th>
<th>Weekly until Stable</th>
<th>Monthly as Indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolytes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Glucose</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Calcium</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BUN</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Creatinine</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Magnesium</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ALT</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>AST</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Alkaline phosphatase</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Total protein</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Albumin</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>GGT</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Prealbumin</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Conjugated bilirubin</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CBC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Iron studies</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Trace elements</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Vitamins</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Adapted from Corkins MR. *Pediatric Nutrition Support Core Curriculum*. Corkins M, ed. Silver Spring, MD: American Society for Parenteral and Enteral Nutrition (ASPEN); 2010
PN – Complications

• Infectious
• Mechanical
 – Infusate-related
 – Catheter-related
 – Occlusions
• Metabolic
 – Electrolyte-, mineral-, trace element-, and vitamin-related
 – PN-associated liver disease
 – Bone disease
 – Overfeeding and underfeeding
 – Refeeding syndrome
 – Allergy
 – Miscellaneous (eg, nephropathy)

PN – Liver Disease

- Well-described complication of PN
- Develops in 40-60% of neonates; ~ 15% in children
- Variable degree of injury
 - Mild: mild cholestasis; gall stones; hepatic steatosis
 - Severe: can result in cirrhosis and liver failure
- Pathogenesis
 - Multifactorial
 - Prolonged duration of PN
 - Lack of enteral feeding
 - Prematurity and low birth weight
 - Early and recurrent sepsis
 - Length of bowel remnant
 - Reduced enterohepatic circulation
 - Deficiency or toxicity of components of PN solutions (excess glucose, excess energy, AA content, Mn, Cu, and fat emulsions)

PN – Liver Disease II30,31

Treatment

• Provide maximal tolerated EN
• Provide cyclical PN as soon as possible
• Consider and treat small bowel bacterial overgrowth
• Consider reducing IV lipids to 1 g/kg per day if conjugated bilirubin rises with no other explanation
 – Consider fish oil–based lipids if the above strategy fails
• If transaminases, alkaline phosphatase, or conjugated bilirubin continue to increase, consider commencing ursodeoxycholic acid

• Consider early referral to an experienced liver-intestinal transplant or intestinal rehabilitation program for children with a poor prognosis or if on PN > 3 months and ≥ 1 of the following:
 – Serum-conjugated bilirubin > 3 mg/dL
 – Platelet count < 100,000/μL
 – Prothrombin time > 15 seconds
 – Partial thromboplastin time > 40 seconds
 – Hepatic fibrosis
 – Concerns about central venous access

Fish Oil and Portal Fibrosis

• Soden JS, et al. ³⁴
 – 2 infants with PNAC
 – Cholestasis resolved or improved (direct bilirubin 1.9 mg/dL)
 – Liver biopsy after fish oil emulsion treatment (11 months and 3 months)
 – Decreased inflammation, but portal fibrosis in 1 plus bridging fibrosis in the other

Infection35,36

• Particular problem in SBS
 – *Small bowel bacterial overgrowth*
 – *Mucosal and systemic inflammation*
 • Elevated fecal calprotectin
 • Elevated serum cytokines
 – *Risk reduced with enteral feedings*

• Increases the risk for cholestasis

Home PN – Infectious Complications

- Bacterial and fungal causes
- Infection vs. colonization (22% of all hubs)
- Causes
 - Colonization
 - Inside catheter or hub
 - Outside of the subcutaneous catheter
 - In fibrin sleeve
 - In subcutaneous tract
 - Contamination
 - From blood seeding
 - Skin contamination along the catheter tract
 - Nonsterile entries into the line
 - Contaminated PN solutions
- Risk of sepsis is reported at 1.5 episodes a year in home PN (HPN) patients

• Prevention
 – Hand hygiene
 – Sterile technique during placement
 – Use line only for PN and not for blood draws
 – Dressing changes per protocol
 – Tubing changes for dextrose AA solutions and IV lipid
 – Avoid multilumen catheters
 – Avoid catheters in groin/diaper area
 – Inadequate pediatric data on the benefits of antibiotic and ethanol locks and antibiotic-impregnated catheters

HPN – Background31

• In the United States, children account for 14% of patients on HPN
• All children dependent on long-term PN should be discharged on HPN if and when
 – They are stable
 • Includes stability of the underlying disease, fluid, and electrolyte requirements and reliable central venous access
 – Familial and social criteria are fulfilled
• Should be followed by a team with experience taking care of HPN patients
• Resource for patients and parents
 – The Oley Foundation: http://www.oley.org

The primary cause of death on HPN

- Underlying disease–related in patients with HPN duration \(\leq 2 \) years
- HPN-related in those on HPN duration \(> 2 \) years

For children, survival rate was

- 90.9% for those not transplant eligible \((n = 44) \)
- 90.7% for those eligible for transplant, but not transplanted \((n = 43) \)
- 75.0% for those actually transplanted \((n = 12) \)
 - Follow-up period for those transplanted not clear
HPN – Economics40-43

- HPN is approximately 50-75\% more “economical” than in-patient hospital care
- The longer a patient survives on HPN, the more cost-effective home treatment becomes
- HPN in children in the United Kingdom led to cost savings of about 2 million Euros in a single year by decreasing the incidence of septic episodes (1/142 days in hospital to 1/567 days at home)

40 Colomb V. \textit{Curr Opin Clin Nutr Metab Care}. 2000;3:237-239.
41 Puntis JW. \textit{Nutrition}. 1998;14:809-812.
42 Richards DM and Irving MH. \textit{Br J Surg}. 1996;83:1226-1229.
HPN – Growth in Children

• HPN is successful in maintaining adequate nutritional status

• Most children with SBS will grow along their own percentiles, and some children will exhibit some degree of catch-up growth

Summary

• PN can be life-saving
• PN can be life-taking
• Many problems are iatrogenic
 – Misuse
 – Inattention to detail
• Very few are just bad luck
Questions?
Mark R. Corkins, MD, CNSP
Le Bonheur Children’s Hospital
University of Tennessee Health Science Center
Memphis, TN

Enteral and Parenteral Access: Lines, Locks, and Tubes
Peripheral lines/intravenous (IV): limited osmolarity; depends on guideline; 900-1200 mOsm maximum\(^1\)
- *Increases risk of infiltration and phlebitis*
- *Limits nutrition; risks of problems*
- *Infant dextrose maximums: term 10%, preterm 12.5%*

Central lines
- *Temporary: short-term use; not for home*
- *Permanent: designed for home use*
- *Tip needs to be central, usually SVC or junction with right atrium\(^2\)*

Permanent Central Lines

• Tunneled, lumens, ports
• Risk of infection: 1.5 infections per year\(^2\)
• Substances of manufacture vary
• Usually heparin lock to prevent thrombosis
 – *Repeated infections suggest ethanol lock*
 – *Meta-analysis supported ethanol lock use in pediatric intestinal failure patients*\(^3\)
 – *Silicone lines only*

Access: Nasal Enteric Tubes

• Placement safety—usually done at bedside
• Checking placement
 – Inaccurate methods4,5
 • Auscultation
 • Aspiration and pH
 • Capnography (esophagus versus stomach)
 – Others
 • Biochemical (bilirubin or enzymes—delay by laboratory)

Access: Nasal Enteric Tubes (cont’d)

• Only **verified** method to confirm placement is x-ray

• Radiation concerns in children

• Also similar literature on gastric versus small bowel

6American Association of Critical-Care Nurses Web site.
Nasal Enteric Tubes: Maintaining Placement

• NG surveillance
 – Mark insertion point\(^7\)
 – Recheck x-ray if change in tube length

• Nasal enteric surveillance
 – As above
 – Small intestinal tube in stomach has increased residual volume

Enteral Access Case

• Jaycee is a 6-month-old referred to the gastrointestinal (GI) clinic for poor weight gain. She does not spit up or have diarrhea. The parents state that she seems satisfied with a few ounces at each feeding and then refuses further intake. Workup?

• A NG tube is placed, and with increased calories, she gains weight. Any further workup?

• At clinic a month later, her weight gain is good, but the oral intake is still inadequate. Next steps?
NG Tubes

• First choice is NG tube in most situations

• Placement teaching
 – Anatomy is designed to swallow
 – Cannot always get an x-ray

• Securing the tube is crucial

• Once in, left in for a month
“Tube” Basics

• Do you need an upper GI series first?
 – Usually do as part of workup for disease process
 – Ensure anatomy is as expected

• Do you need a gastric emptying study?
 – If suspect motility issues
 – Usually part of appropriate workup

• Do you need a pH probe study?
Selection of Enteral Device

• Persistent dysphagia indicates need for a permanent feeding device8,9

• NG feeds for short-term use

 – Literature indicates that, if over 4 weeks, need to consider permanent device10

 – Neonates have opportunity for developmental improvement

“Permanent” Tubes

• Nutrition challenge successful to gain weight
 – Attempt to wean off unsuccessful
 – Inadequate nutrition without it

• Problems with NG
 – Otitis and sinusitis
 – Repeated placements
Gastrostomy

• Open versus PEG
• Open with other procedures: fundoplication, pyloromyotomy
• PEG quick with rapid recovery
PEG

- Scope used to pick site
- Hollow needle pushed into stomach
- Guide wire into the stomach; grasp with snare
- Endoscope used to pull guide wire out of mouth
- Gastrostomy introducer attached and pulled through mouth, down esophagus, and into stomach
- Scope follows gastrostomy and visualizes placement in the stomach
Gastrostomies

- Old fashioned type was a tube
Gastrostomies

• Currently primary “button” placement
Button Replacement

• Flap or valve broken in button
 – Prevent reflux back through button
• Bigger size needed
• Rigid dome tip requires an obturator
• Balloon tip replaced by parents
Buttons

- Domed buttons
- Balloon buttons
Button Connections

Domed

Balloon
Button Too Tight
Changing a Dome Button
Access: PEG

- Feeding after placement: literature indicates immediately to several hours
 - Recommendation is 2 hours in adults, 6 hours in children\(^\text{11}\)
 - Study of feeding at 3 hours in children\(^\text{12}\)

Gastrostomy

• Need for fundoplication?

• Reflux potential minimal, except neurologically impaired with abnormal pH probe preplacement13

Jejunal Feeds Through Gastrostomy

• Can place a jejunal tube through a gastrostomy site

• Literature indicates a direct jejunostomy requires much less intervention14

Tube Clogging

• Prevention best
 – Flush after every bolus or every 4 hours of continuous
 – Lowest volume necessary to clear tube
• Mechanical devices sold and used in adults, none made for pediatric sized tubes
• Lots of substances described to dissolve a clog
 – Warm water with instill/withdraw protocol recommended
 – Safe and low cost

Preventing Misconnections

• Train family members and visitors not to reconnect lines
• Avoid modifying or adapting IV devices for enteral use
• When reconnecting lines, trace it back to the origin on the body
• Retrace all lines to the origin when doing a handoff or shift change
Questions?
Valeria Cohran, MD, MS
Medical Director of Intestinal Rehabilitation and Transplant
Assistant Professor of Pediatrics at Northwestern University
Feinberg School of Medicine
Children's Memorial Hospital
Chicago, IL

Critical Care Nutrition Pearls
Malnutrition in the Pediatric Intensive Care Unit$^{1-3}$

- 24% of patients in Netherlands
- Up to 53% of Brazilian children
- Has deleterious effects on patient outcomes
 - Higher rate of infections and non-infection complications
 - Increased mortality
 - Longer hospital stay
 - Increased costs

Etiology of Malnutrition

• Pediatric malnutrition
 – Protein-energy malnutrition

• Multifactorial
 – Increased demands secondary to the metabolic stress response
 – Failure to estimate energy expenditure accurately
 – Inadequate substrate delivery at the bedside

Critical Insult
Sepsis, Trauma, Surgery, Burns, Cardiac bypass

Local Response
Innate Immunity
Vascular endothelium
Perfusion Cytokines
Chemokines Eicosanoids
Reactive Oxygen species
Nitric Oxide Compliment
Apoptosis

Central Response
Hypothalamus
Anterior pituitary

SEVERE INJURY
Systemic Inflammatory Response Syndrome (SIRS)
Adrenal Cortex - hypercortisolism
Liver - acute phase proteins
Bone marrow - leucocytosis
Immunity - immune suppression
Cardiovascular - shock
Pulmonary - ARDS
Renal - failure
Gut - ischemia, translocation
Critical Illness: Systemic Inflammatory Response Syndrome

- Preresuscitative ebb phase (hours)
 - Hypometabolic phase
- Hypermetabolic flow phase (days)
 - But resting energy expenditure (REE) is often reduced
 - Patients are typically ventilated and sedated
 - Children cannot grow during this phase
- Recovery phase (weeks)
 - Hypermetabolism can persist for a month (eg, the “chronic” pediatric intensive care unit [ICU] patients with progressive malnutrition)
 - Children can grow during this phase

Nutritional Assessment\(^5\)

- Z-scores from World Health Organization
 - Weight for age
 - Length or height for age < 2 years
 - Body mass index (BMI) > 2 years
- Malnourished
 - Z-scores ≤ –2
- Overweight
 - BMI ≥ +2

Nutritional Assessment (cont’d)³,⁶

• Weights
 – American Society for Parenteral and Enteral Nutrition (ASPEN) guidelines recommend screening of all patients
 – Infrequently obtained due to patient status in ICU

• Anthropometrics
 – Mid-upper arm circumference and triceps skin fold, length, BMI
 • Not reliable measurements, with interuser variability

• Laboratory
 – Albumin, prealbumin, transferrin, and retinol-binding protein tend to be less accurate during acute illness

Nutritional Assessment (cont’d)³,⁷

• Prealbumin concentration is lower in patients with liver disease
• C-reactive protein and prealbumin are inversely related
• Infants after surgery
 – Decrease in C-reactive protein < 2 mg/dL has been associated with return of anabolism and subsequent increase in serum prealbumin
 – Interleukin-6, hallmark of systemic inflammatory response syndrome, may suggest patients at risk for nutritional deterioration

Overfeeding

- Risk factors
 - Low activity
 - Decreased insensible fluid losses
 - Absence of growth

- Increases ventilatory effort because of increased CO$_2$ production
- Impairs liver function by inducing steatosis and cholestasis
- Increases risk for infection secondary to hyperglycemia

Energy Requirements6

- Indirect calorimetry
 - \textit{Volume of oxygen consumed and the volume of carbon dioxide produced}
 - \textit{Underfeeding promotes use of endogenous fat stores}
 - Decrease in respiratory quotient (RQ); low sensitivity: 63%; high negative positive-pressure ventilation (PPV): 90%
- \textit{Overfeeding}
 - Increase in RQ > 1.0; low sensitivity: 21%; PPV: 93%

PICU Criteria for IC Testing

- Underweight (body mass index [BMI] <5th percentile for age), risk of overweight (BMI >85th percentile for age), or overweight (BMI >95th percentile for age)
- >10% weight gain or loss during medical-surgical intensive care unit stay
- Failure to wean or escalation in respiratory support
- PICU stay >4 weeks
- Suspicion of persistent inflammatory state (oncologic diagnoses including stem cell and bone marrow transplant, systemic inflammatory response syndrome)
- Condition associated with notable altered metabolic rate (status epilepticus, hyperthermia, dysautonomia)
- Clinical suspicion for underfeeding or overfeeding

Energy requirements6,15

- ASPEN recommends the use of resting energy expenditure (REE) using indirect calorimetry in patients with metabolic alterations or malnutrition
- Boston Children’s PICU
 - Prospective cohort
 - 62% of MDs failed to predict true metabolic state
 - 83% of children were overfeed with a cumulative excess of 8000 kcal/week in kids<1 year of age

Enteral Nutrition9-11

- $n = 688$ randomized controlled trial (RCT) – enteral nutrition at 48 hours vs 3-6 hours has decrease in length of hospital stay 16 vs 13 days and mortality (12% vs 8.5%) in pediatric burn patients
- Early institution of enteral nutrition has been shown to improve outcomes
 - *Interrupted for procedures*
 - *Intolerance of feedings*
- Canadian clinical guidelines
 - *Decrease in length of stay and improved survival*
- Route is still debatable
 - *Gastric vs postpyloric*

Total Parenteral Nutrition6

- Total parenteral nutrition initiation
 - At least 5 days prior to reaching goal nutrition
- Fluid requirements
- Fluid losses
 - Na, Cl, HCO\textsubscript{3}
 - Urine electrolytes or measurement in drained fluid
- Hypophosphatemia
- Hypomagnesemia
- Acidosis or alkalemia

Pediatric Gastrointestinal Electrolyte Losses

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sodium (mEq/L)</th>
<th>Potassium (mEq/L)</th>
<th>Chloride (mEq/L)</th>
<th>Bicarbonate (mEq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastric</td>
<td>140</td>
<td>15</td>
<td>155</td>
<td>–</td>
</tr>
<tr>
<td>Ileostomy</td>
<td>80-140</td>
<td>15</td>
<td>115</td>
<td>40</td>
</tr>
<tr>
<td>Colostomy</td>
<td>50-80</td>
<td>10-30</td>
<td>40</td>
<td>20-25</td>
</tr>
<tr>
<td>Secretory</td>
<td>60-120</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>30-40</td>
<td>10-80</td>
<td>10-110</td>
<td>30</td>
</tr>
<tr>
<td>Normal stool</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Micronutrients13

- Zinc
- Copper
- Vitamins B, C, and E
- Selenium
- Vitamin D
- Antioxidants, including trace elements and vitamins, such as high-dose selenium, may lead to improved outcomes

Refeeding Syndrome

• Signs and symptoms that occur after providing adequate nutrition to previously starved patients
• Eating disorders
• Chronic liver disease
• Congenital heart disease
• Malabsorption
 – Short gut syndrome
 – Inflammatory bowel disease
 – Cystic fibrosis
 – Pancreatic insufficiency
Symptoms Associated With Refeeding Syndrome14

- Unintentional weight loss > 10% within 1-3 months
- < 70-80% of ideal body weight
- Prolonged nothing-by-mouth status > 7-10 days
- Muscle wasting
- Chronic dysphagia
- Inadequate nutrition > 10 days

Pathophysiology of Refeeding

- Dramatic shift in macronutrient metabolism
 - *Increase in insulin secretion*
 - *Glucagon release is inhibited*
 - *Activation of previously slowed anabolic pathways*
 - *Shift from lipolysis to lipogenesis*
- Depletion of adenosine triphosphate (ATP)
- Reduced electrolytes and vitamins
- Migration of electrolytes to intracellular locations

Electrolyte Imbalance

- Hypophosphatemia
 - *Increased insulin leads to intracellular migration of phosphorus*
 - *Required for phospholipids, nucleic acids, and ATP*
- Hypokalemia
 - *Carbohydrate reintroduction leads to increased insulin, which shifts potassium intracellularly*
- Hypomagnesemia
 - *Cofactor for a number of processes*
- Hyperglycemia
- Sodium retention and fluid imbalance
 - *Fluid retention, pulmonary edema, and congestive heart failure*
Samuel A. Kocoshis, MD
Professor of Pediatrics
Medical Director
Intestinal Care Center and Intestinal Transplantation
Cincinnati Children’s Hospital Medical Center
Cincinnati, OH

Nutrition in Liver Disease
Malnutrition and Growth Failure Are Common Among Pediatric Patients With Liver Disease

• This is an observed phenomenon
• Most studies showing disordered metabolism in liver disease have been performed on adults
• Because pediatric studies are lacking, disordered metabolism in children with liver disease must be inferred
Causes of Malnutrition Among Patients With Liver Disease

• Poor dietary intake
 – *iatrogenic*
 • Unpalatable salt and protein restricted diets
 – *Anorexia*
 • Inadequate leptin catabolism

Causes of Malnutrition Among Patients With Liver Disease (cont’d)

- Poor dietary intake (cont’d)
 - Zinc deficiency
 - Ginès and Arroyo²
 - Diabetes/prediabetes
 - Insulin resistance³
 - Cytokine excess
 - Tilg⁴

Causes of Malnutrition Among Patients With Liver Disease (cont’d)

• Iatrogenic
 – Dietary sodium and protein restriction
 – Large volume paracentesis
 – Fluid restriction
 – Medication
 • Neomycin
 • Lactulose
 • Antibiotics
 • Diuretics
 • Cholestyramine
Causes of Malnutrition Among Liver Transplant Candidates

- Nutrient malabsorption or maldigestion
 - Cholestasis
 - Protein-losing enteropathy related to portal hypertension
 - Exocrine pancreatic insufficiency
Pancreatic Insufficiency in End Stage Liver Disease

- Patients with progressive familial cholestasis (type I rather than types II or III)
 - Knisely
- Patients with Alagille syndrome
 - Piccoli and Spinner
- Patients with recurrent pancreatitis
- Patients with chronic portal hypertension
 - Lee and Lai

Lee SP and Lai KS. Am J Gastroenterol. 1976;65:244-248.
Effect of Elevated Serum Bile Acids Upon Intestinal Function

- Thiry-Vella loop was created
- Successive superior mesenteric artery perfusion of saline cholate, deoxycholate, taurocholate, and taurodeoxycholate at 5, 8, 12, and 22 μm
- At 8 μm, free bile acid (BA) disturbed transport of H₂O, Na, and amino acids (AA) and produced reduction in Na-K adenosine triphosphatase associated with mitochondrial abnormalities
- At 22 μm, conjugated BA disturbed Na and H₂O transport, but not other function
 - Berant M, et al. ⁸

Disordered Glucose Homeostasis in Liver Disease

• In portal hypertension: insulin resistance
 – *Hyperinsulinemia and hyperglucagonemia both occur*
 • Selberg, et al.⁹

When Liver Disease Becomes End-Stage, an Accelerated Starvation Pattern Occurs

• Glycogen stores become depleted when liver disease becomes advanced
 – Gluconeogenesis is increased
• Lipid peroxidation takes place
• Protein catabolism is accelerated
 – Yamanaka, et al.10

Disordered Protein Metabolism in Liver Disease

• Even patients with early cirrhosis (Child’s A) have reduced protein stores
 – Prijatmoko, et al.¹²

• Adult patients have increased proteolysis that cannot be suppressed by feeding
 – Tessari¹³

• Data regarding the value of branched chain AAs in enhancing nitrogen balance and protein accretion are conflicting
 – Sokal, et al.¹⁴
 – Marchesini, et al.¹⁵

Measurement of Energy Expenditure16

- **Harris-Benedict equation**
 - Male = $66.1 + [13.8 \times wt(kg)] + [5 \times ht(cm)] - 6.8 \times age = kcal$
 - Female = $655 + [9.6 \times wt(kg)] + [1.8 \times ht(cm)] - 4.7 \times age = kcal$

- **Indirect calorimetry (metabolic cart)**
 - O_2 consumption and CO_2 production measured
 - Respiratory quotient (RQ) calculated
 - 0.7 for fat
 - 0.8 for protein
 - 1.0 for carbohydrate (CHO)

• High risk (62% 1-year and 54% 5-year survival)
 – Measured resting energy expenditure (REE)/calculated REE = 120%
 – Measured REE/calculated REE = 100-120% and body cell mass/body wt = < 35%

• Low risk (88% 1-year and 88% 5-year survival)
 – Rest of patients

Obesity and Liver Disease

• For adults, obesity is defined as a body mass index (BMI) of > 30\(^{17}\)

• For children, obesity is a BMI of > 85th %tile for age\(^{18}\)

• Nonalcoholic steatohepatitis and nonalcoholic fatty liver disease are common in these patients (50-70%)\(^{19}\)

• Those with BMI > 35 have increased incidence of wound dehiscence and multiple organ failure

 – Sawyer, et al.\(^{20}\)

\(^{19}\)Gill HK and Wu GY. World J Gastroenterol. 2006;12:345-353.

Nutritional Evaluation of Children With Liver Disease
Techniques of Nutritional Evaluation

- Indirect calorimetry (metabolic cart)
- Anthropometry/BMI
- Biochemical evaluation
 - Blood
 - Urine
 - Gut effluent
- Histology
- Radiology
Indirect Calorimetry in Infants

"I WILL NOT REMAIN STILL"

Photograph courtesy of Dr. Conrad Cole.
Whole Body Calorimetry

Photograph courtesy of Dr. Conrad Cole.
What Can We Learn From Calorimetry?¹⁶

• Can determine REE
• Can determine RQ
 – CO_2 eliminated/O_2 consumed
 – Among anabolic individuals receiving a balanced diet, the normal quotient is approximately 0.8
 • If the patient is primarily metabolizing CHOcs, the quotient is ~ 1.0
 • If the patient is primarily metabolizing fats, the quotient is ~ 0.7

Estimation of Body Composition

- Body fluid volume
 - *Dilution of an isotope, a dye*

- Body element content
 - *K, Na, etc. are proportionate to fat-free mass*

- Body density
 - *Weight on land/weight submerged*
Anthropometry

- Mid arm muscle area
- Triceps skin fold
- Biceps skin fold
- Abdomen: hip circumference
- BMI
Nutritional Assessment – Caveats

• BMI
 – Highly unreliable among patients who have overt ascites and/or edema due to hyperaldosteronism
Imaging Techniques for Body Content Estimation

• Computed tomography scan
• Magnetic resonance imaging
• Dual-energy x-ray absorptiometry (DEXA)
 – 2 x-ray beams of different intensity are focused on the area in question
• Bioelectric impedance
 – AC current applied and resistance measured
 – Impedance is equal to length/cross section area
Tests of Intestinal Function

- Breath hydrogen
- Fecal fat
- D-xylose
- Nitrogen balance
- Fecal elastase
Histology

- Small intestinal histology
 - Are villi long?
 - Is there inflammation?
 - Is the histology consistent with gluten enteropathy?

Radiology

• Upper gastrointestinal/small bowel series
 – Gives a rough idea of gastric capacity and emptying time
 – Gives a rough idea of mucosal relief
 – Gives an idea of how well roux-limbs (in biliary atresia) empty

• Gastric emptying scan
Anthropometric Analysis

- Weight, height, weight for height, BMI
- Mid arm circumference
- Triceps skin fold measurement
- Bioelectric impedance
- DEXA
Biochemical Markers

- Hemogram
- Total protein/albumin
- Prealbumin/retinol-binding protein (RBP)
- Ca, Mg, PO$_4$
- Electrolytes, blood urea nitrogen, creatinine
- Liver panel
- Triene:tetraene ratio
- Trace elements
Use of Various Proteins in Assessing Acuity of Malnutrition Is Dependent Upon Their Half-Lives

<table>
<thead>
<tr>
<th>Protein</th>
<th>Half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin</td>
<td>18 days</td>
</tr>
<tr>
<td>Transferrin</td>
<td>8 days</td>
</tr>
<tr>
<td>Prealbumin</td>
<td>2-3 days</td>
</tr>
<tr>
<td>RBP</td>
<td>2 days</td>
</tr>
<tr>
<td>Ferritin</td>
<td>30 hours</td>
</tr>
</tbody>
</table>

Can be obtained, but serum (or tissue) levels do not necessarily correlate well with clinical deficiency states

- For example, zinc, selenium, manganese, molybdenum, etc. are widely distributed in many body compartments

Some patients with cholestatic liver disease are hypermanganesemic and hypercupremic, but this may represent an epiphenomenon

- Are these oxidants damaging to the liver during cholestasis? Not necessarily.
Carnitine

- Synthesized from lysine and methionine25
- Facilitates entry of long-chain fatty acids (FAs) into mitochondrion for β oxidation25
- About 20\% of ingested carnitine is absorbed25
- Very low birth weight prematures are typically carnitine-deficient
 - MeLegh, et al.26
- Carnitine synthesis may be inhibited during cholestasis
 - Sekas and Paul27
- Best marker of status is acyl/free ratio (normal = < 0.4)28

Medium-Chain Triglycerides Versus Long-Chain Triglycerides for Cholestatic Patients?
Medium-Chain Triglycerides Versus Long-Chain Triglycerides as a Nutrient Source

- Medium-chain triglyceride (MCT)
 - **Advantages**
 - Bypasses lymphatics
 - **Disadvantages**
 - Fewer kcals
 - High osmotic load
 - Energy cannot be stored
 - Oxidation produces FAs

- Long-chain triglyceride
 - **Advantages**
 - Excellent in producing adaptation
 - High caloric density
 - Low osmolality
 - **Disadvantages**
 - Less efficient absorption
Excessive medium chain triglycerides at the expense of essential fatty acids can result in essential fatty acid deficiency.29

20:3ω9/20:4ω6

Arachidonic and linoleic acids comprise the tetraenes

The mead acid comprises the trienes

ω3, ω6, and ω9 FAs all compete for the same desaturases. Only when ω3 and ω6 are deficient, the mead acid (ecosatrienoic acid) is synthesized.

A triene:tetraene ratio of > 0.2 correlates highly with essential FA (EFA) deficiency
Water Soluble Vitamins

• Patients getting multivitamin infusions are generally sufficient
• During times of shortage, deficiencies may appear
• Most patients with liver failure do fine if supplemented
Surrogate Markers For Micronutrient Deficiency

• A good surrogate marker for Zn deficiency is reduced alkaline phosphatase level
• A good surrogate marker for pyrodoxine deficiency is reduced alanine aminotransferase level
• A good surrogate marker for copper deficiency is neutropenia
Fat Soluble Vitamin Deficiency Is Common Among Cholestatic Children

How should we monitor for fat soluble vitamin deficiency?
Monitoring Vitamin A Status

- Hepatic Concentration
 - Best marker because >90% of retinol is stored in liver
- Relative Dose Response\(^{31}\)
 - Measure retinol at time 0, give a test dose of retinyl palmitate and measure retinol 5 hours.
 - RDR \((R5 - R0)/R5\)
 - >20% is always associated with reduced stores
 - <10% is never associated with reduced stores
- Seven other tests of vitamin A status in descending order of sensitivity/specificity compared to RDR\(^{32}\)
 - Serum retinol > retinol binding protein (rbp) > retinol/rbp ratio > corneal touch cytology (cic) > slit lamp > tear film breakup exam > Shirmer test
 - Controversy exists vis a vis relationship between RDR and retinol\(^{33}\)

Monitoring Vitamin D Status

- 25-OH vitamin D
- 1, 25-OH vitamin D
 - Although this is the active form, it tells us nothing about vitamin D stores
- PTH level
- Tubular reabsorption of Phosphate\(^{34}\)
 - 1-(urine PO4/serum PO4 x serum creatinine/urine creatinine) x 100=\% of PO4 reabsorbed.
 - Should be \(~100\%\) in the face of low serum PO4 and \(>80\%\) in the face of normal serum PO4

\(^{34}\) Payne RB. Ann Clin Biochem 198;35:201-206.
Monitoring Vitamin E Status

• Serum Vitamin E level
• Serum Vitamin E/Total Serum Lipids35
 – Slightly more sensitive (when sural nerve biopsy or neurologic symptoms are the gold standard) among cholestatic infants
 • Measuring total serum lipids is preferable to using serum cholesterol or serum triglycerides alone
 • Serum cholesterol is more reliable than serum triglycerides in children because triglycerides vary greatly with feeding36

Monitoring Vitamin K Status

• Vitamin K Level
• PIVKA (prothrombin in vitamin K deficiency)\(^{37}\)
• Prothrombin Time
• Factor VII level
 – Among the vitamin K dependent factors (II, VII IX, X)

Nutritional Management of Children With Liver Disease

• Fluids, electrolytes, trace elements
 – Restriction of fluid and salt should not be excessive for fear of “overshooting” and precipitating hepatorenal syndrome.
 – Excessive zinc losses may precipitate zinc deficiency so zinc supplementation is prudent.

Nutritional Management: Energy Requirements in Pediatric Liver Disease \(^{10,40}\)

- Resting energy expenditure is 127-140% of predicted energy expenditure.
- Infants and children should receive 130-150% of recommended daily allowance based upon ideal weight rather than wet weight.
- Nocturnal feedings or a late-night snack is important to minimize gluconeogenic response and protein catabolism.

Nutritional Management: Protein and Carbohydrate

• Under most circumstances, protein should not be restricted in children with chronic liver disease.

• Supplying 45-65% of the daily caloric distribution as carbohydrate will have a protein sparing effect and will satisfy the USDA Dietary Reference Intake.

• Supplementation with some branched chain amino acids may improve nitrogen balance.

Nutritional Management: Fat

• No rationale for restricting lipids (even in patients with fat malabsorption)
• MCT supplementation is advisable, but diets should contain adequate quantities of essential fatty acids to prevent deficiency43
• Recommendations for fat soluble vitamin supplementation are as follows:44,45
 – Vitamin A—10000 u if given with tocopherol polyethylene glycol succinate
 – 25-OH Vitamin D—2-4 mcg/kg/day
 – Vitamin E—25-50 IU/kg/day as tocopherol polyethylene glycol succinate
 – Vitamin K—2.5-5 mg 2-7 x/week.

44 Sokol R. Gastroenterol Clin North Am 1994;23: 673-705
45 Argao EA, Heubi JE. Current Opin Pediatr 1993;5: 562-566
Summary

• Indirect calorimetry is a helpful adjunct in nutrition planning for undernourished patients with liver disease
• The patient with liver disease should not be deprived of calories or protein
• Patients should be monitored for signs of glucose intolerance
• Nitrogen balance seems better if branched chain AAs enhance other AAs rather than replacing them
• End-stage liver patients may benefit from nighttime feedings
• Among cholestatic patients, fat soluble vitamins should be supplemented
• Medium chain fats are important energy sources among cholestatic patients, but adequate EFA must be provided
Mark R. Corkins, MD, CNSP
Le Bonheur Children’s Hospital
University of Tennessee Health Science Center
Memphis, TN

Enteral Nutrition
How to Feed

• Oral
 – *Increase calorie density*

• Oral supplements: formulas

• Nasogastric tube: bolus, nipple/gavage approach
 – *Goal set for each feeding, time limit*
 – *Feed as much as possible and gavage remainder*
 – *Works if normal gastrointestinal (GI) tract function*

How to Feed¹ (cont’d)

• Nighttime drip
 – Hunger later in the day

• Continuous drip; gastric, then jejunal¹
 – No hunger, best tolerance
 – GI tract dysfunction
 • Motility
 • Short bowel syndrome

Enteral Nutrition Orders

• Every order should contain 4 standard elements
 1. Patient information
 2. Formula details (name, strength)
 3. Delivery site/device
 4. Administration method and rate

Enteral Feeding Formulas Used in Pediatrics

- Human breast milk
- Infant and “premie” formulas
- Pediatric formulas
- Blenderized whole food formulas
What to Feed

- Under 1-year-old infant: breast milk/formula
 - Increase caloric density, if needed
 - Special formulas for specific diseases
- Over 1 year: standard is 30 cal/oz formulas

Reconstituted Infant and Pediatric Formulas: Hospital Standards¹

- Use sterile water
- Use a special formula kitchen with trained staff using aseptic technique
- Formula is good for 24 h
- Formula is to be refrigerated within 1 h of preparation
- Amount of formula required for a 4-h interval or bolus feed is warmed in a bottle warmer or in warm water shortly before use

Formulas

• Polymeric
 – Standard proteins, fats, and carbohydrates
 – Cheapest, most milk-based

• Semielemental
 – Predigested, di- and tripeptides
 – Some with medium-chain triglycerides (MCTs)

• Elemental
 – Amino acid–based

• Modular

3Diamanti A. Nutritional Therapy and Metabolism. 2010;28:40-45.
Infant Feeding
• 2011 Breastfeeding Report Card: Centers for Disease Control and Prevention (CDC)
 — 75% of mothers initiate breastfeeding
 — 44% are breastfeeding at 6 months
 — 24% are breastfeeding at 12 months
 — 35% and 15% are breastfeeding exclusively at 3 and 6 months, respectively

Human Milk

- Colloidal dispersions of casein molecules, emulsions of fat globules, fat globule membranes, and live cells
- Ratio of whey to casein: 70-80% whey to 20-30% casein decreases over time to 55% whey and 44% casein in mature milk
- Iron, vitamin K, and vitamin D are low in human milk, and deficiency in the infant can occur

Human Milk

- Vitamin D—400 IU/day until infant is weaned\(^6\)
- Iron supplementation should start at 4 months with 1 mg/kg/day oral iron; continue until adequate oral iron from foods\(^7\)

Human Milk Benefits

• Reduced risk of acute otitis media, nonspecific gastroenteritis, severe lower respiratory tract infections, atopic dermatitis, asthma in young children, obesity, type 1 and 2 diabetes, childhood leukemia, sudden infant death, and necrotizing enterocolitis

Breast milk does not meet calorie and micronutrient needs of premature infants

Modular or fortifiers added to human breast milk are done in a specially designated area

Where possible, liquid fortifiers are used and not powdered, but most available are powdered

Premature: Breast Milk

• Has a 4-h maximum hang time in hospital
• Usually given via syringe pump that is at a 40°-60° angle
• Requires a new feeding set up with every feeding (new syringe and tubing)
Premie Formulas

• Standard 22 kcal/oz
• Come liquid, ready-to-feed
• Higher protein
• Higher fat proportion of MCTs
• Increased calcium and phosphorus
Premie Discharge Formulas

• Standard is 22 cal/oz
• Either powder or ready-to-feed, since concentrate difficult to make 22 cal/oz
• Higher calcium/phosphorus
• Nutrients between hospital premature formula and term formula
• To postnatal corrected age 9-12 months or weight for length is above 25th percentile
Breast Milk Contraindications

- Infections: HIV, human T-cell lymphototropic virus (HTLV) types 1 and 2, or active pulmonary tuberculosis before 2 weeks of treatment should not breastfeed
- Infants with inborn errors of metabolism, such as galactosemia

Donor Human Milk

- Most nonprofit; one for profit
- Protocols from Human Milk Banking Association of North America
- Follows the recommendations of the US Food and Drug Administration and CDC
- Standards for cleanliness and storage of human milk
- Tested for HIV, HTLV types 1 and 2, hepatitis B and C, and syphilis
- Pasteurized

Human Milk Handling and Storage

- Hands washed with soap and water
- Hand-expressed or pump
- Glass or hard plastic container
- Frozen if not used within 72 h
 - Labeled with date and time collected; single-feed aliquots
 - Okay for 3-6 months in conventional freezer
- Thaw rapidly under lukewarm water
- Never refreeze

12CDC Web site.
Infant Formulas13

- Historically, lots of formulas were available
- Deaths linked to a soy formula that was deficient in chloride
- 1980 Infant Formula Act (revised 1986)
 - Amendment to the Federal Food, Drug, and Cosmetic Act
 - Regulate infant formulas
 - Establish nutrient levels

13Martinez JA and Ballew MP. Pediatr Rev. 2011;32:179-189.
Choosing an Infant Formula

• Start with a standard formula
• If not tolerated:
 – *Determine the most likely cause of the intolerance*
 – *Change to a formula that will treat that condition*
 – *Assess the response to the formula change*
 – *Decide if another formula change is necessary*
Infant Formulas: Protein Content

- Divided into 4 classes of formulas
 - Cow’s milk–based formulas
 - Soy formulas
 - Casein hydrolysate formulas
 - Amino acid–based formulas

14University of Washington Web site.
Infant Cow’s Milk–Based15

- Widely available
- Cheap starting material
- Constantly tweaked to attempt to simulate breast milk

Infant Soy Formulas16

- Soy formula for vegans
- Galactosemia and hereditary lactase deficiency (rare)
- No proven benefit in infantile colic or fussiness
- Crossover with cow’s milk formula protein allergy is high

Special Infant Formula Proteins

• Hydrolysate first line for formula protein allergy17
 – *Reflux guidelines recommended 2-week trial*17
 – *Data about prevention of atopic disease*18

• Amino acid–based formula if hydrolysate not tolerated17

17Carney LN. *Today’s Dietitian*. 2009;11:48.
18Jung AD. *Am Fam Physician*. 2001;64:1853-1861.
Infant Formulas – Carbohydrate

- Main types of carbohydrates in formulas19
 - Lactose
 - Sucrose
 - Glucose polymers

- Galactosemia: soy formulas, because they do not contain lactose20

- Which formulas contain sucrose?19
 - Alimentum® and soy formulas, except Prosobee®

Infant Formulas – Fat Content

• Main types of fats in formulas
 – Long-chain triglycerides
 – MCTs

• When are MCTs beneficial?
 – Impaired fat absorption or lymphatic abnormalities
 – Cystic fibrosis, short gut syndrome, and protracted diarrhea

• Which formulas contain MCTs?
 – Alimentum® (33%), Pregestimil® (55%)
 – Elecare® (33%), Neocate® (33%)
 – Portagen® (87%), Vital® HN (45%)

DHA and ARA21

- Docosahexaenoic acid (DHA) and arachidonic acid (ARA)
- Long-chain polyunsaturated fatty acids
- Present in breast milk; were not in formulas
- Rat studies showed increased visual acuity and neurologic development; some infant studies agree
- No harmful effects found
- Now in most infant formulas

Immune Input

• Probiotics
 – Evidence of decreased infectious illnesses, especially diarrheal illnesses
 – Now present in some infant formulas

Infant Formulas End Thoughts

- Made 20 cal/oz, because like breast milk
 - Infants need more free water; kidney function immature
 - Increased caloric density increases risk of dehydration
- Some newer studies show that actual caloric content of breast milk is < 20 cal/oz

Infant Formula End Thoughts

• Can underdilute to 24 cal/oz
• Above this, need supplementation
 – Modulars: protein, fat, carbohydrate

Infection reports

- Enterobacter sakazakii now Cronobacter
- Powdered formula not sterile, reports of infections in infants with this bacteria (4-6 per year)
Metabolic Infant Formulas

• Specific formulas for specific diseases
• Carbohydrate-free formulas
 – Require addition of a carbohydrate
• Modified fat formulas
• Reduced mineral formulas
Complementary Foods

- Recommendations fuzzy, because no literature
- Recommend exclusive breast milk or formula to 6 months of age
- Then discuss starting cereal and single ingredient solids at 4-6 months of age

Pediatric Formulas
Kaycee is a 13-year-old that presents with newly diagnosed Crohn’s disease and mild malnutrition. What form of nutrition supplementation would you start?

She develops a stricture and requires surgical resection of her ileum. Postoperation, she has difficulty with tolerating standard feedings. What enteral interventions could you try?
Pediatric Formulas

• Most are 30 kcal/oz, but some are 45 kcal/oz
• Still need to meet free-water needs
• Higher vitamin and mineral levels to meet pediatric dietary reference intakes
Pediatric Oral Supplements

• First line to increase caloric intake
• Sweetened with sucrose to enhance taste
• Some ready-to-feed, others powdered and reconstituted with whole milk
Standard Cow Milk–Based

• Widely available
• Cheap
• Unflavored, which lowers osmolarity
• Lactose-free
 – Potential for lactose intolerance
• Fat mixture: mixture of long- and medium-chain fats
Di- and Tripeptide Formulas

• Not designed for allergy or malabsorption conditions
• Better emptying
• Better tolerated
 – *Fats contain a percentage of MCT*

Elemental Pediatric Formulas

- Amino acid–based
- None with high MCT
- Use for allergic?
- Short bowel
 - Better emptying
 - Absorption immediately

Enteral Feeding Questions

- Fiber? Helps with stooling issues
 - Soluble versus insoluble
- Transpyloric feeds—Elemental?
 - Tolerance okay
 - Animal studies: absorption better
- When is adult okay?
 - Adolescent? Calcium and phosphorus needs to be higher
 - Do contain higher protein content
Immune Effects by Formulas

• No pediatric immunomodulating formulas
 – Formula for inflammatory bowel disease with transforming growth factor–β: not used, so gone
 – Formulas containing ω-3 fats under study

• Specialty formulas for specific situations
 – Ketogenic diet
 – Fat transport defects
Delivery Systems

• Old fashioned was cans (now some bottles) decanted into bag
 – Ice pocket on the outside for extended drip feeds
 – Good for 24 h

• Closed systems now available (no infant)
 – Sterile, good for immunocompromised
 – Good for 48 h
 – No manipulation possible
Blenderized Formula

• One commercially available
• Parents perceive as better
 – Potential to be incomplete without guidance
 – Resources available with carefully worked out recipes
 – Tons of work for family
Questions?
Samuel A. Kocoshis, MD
Professor of Pediatrics
Medical Director
Intestinal Care Center and Intestinal Transplantation
Cincinnati Children’s Hospital Medical Center
Cincinnati, OH

Short Bowel Syndrome
Surgical Causes of Intestinal Failure

<table>
<thead>
<tr>
<th>Cause</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Necrotizing Enterocolitis</td>
<td>29%</td>
</tr>
<tr>
<td>Volvulus</td>
<td>27%</td>
</tr>
<tr>
<td>Atresia</td>
<td>23%</td>
</tr>
<tr>
<td>Gastrochisis</td>
<td>10%</td>
</tr>
<tr>
<td>Aganglionosis</td>
<td>4%</td>
</tr>
<tr>
<td>Other</td>
<td>7%</td>
</tr>
</tbody>
</table>

Compiled by Dr. Jane Balint.
The Epidemiology of Short Bowel Syndrome Has Changed

- Gastrochisis is now the second leading cause of intestinal failure in many centers

- *In utero* environment seems crucial in producing gastrochisis
 - Young maternal age
 - Exposure of fetus to agents producing vascular compromise

Factors Contributing to Outcome

- Age at time of injury
- Amount and site of remaining bowel
- Function and motility of residual intestine
- Adaptation
- Other complicating factors
 - Cholestatic liver disease
 - Infections
 - Further injury to remaining bowel
Age at Time of Injury²

• Intestine will grow as the infant grows
• Potential for growth is greatest in premature infant
 — *Length of normal jejunum and ileum at autopsy*
 • 19-27 weeks gestation: 115 ± 21 cm
 • 27-35 weeks gestation: 172 ± 29 cm
 • > 35 weeks gestation: 248 ± 40 cm

Loss of Any Bowel

- Decreased surface area for absorption
- Shorter transit time
- Hypergastrinemia³
 - Predilection for acid peptic disease
 - Decreased pancreatic enzyme activity
 - Precipitation of bile acids
 - Damage to epithelium of proximal small bowel
 - Stimulates intestinal motility

Loss of Ileum

- Loss of glucagon-like peptide (GLP)2
- Large fluid and electrolyte losses
 - *Sodium loss can contribute to poor growth*4
- Malabsorption of bile acids, impairing fat and fat soluble vitamin absorption
- Lack of absorption of vitamin B$_{12}$

Loss of Ileocecal Valve5

- While the valve is valuable, recent changes in dietary approach have obviated some of the problems associated with its loss.
- However, the time to enteral autonomy is increased in patients without an ileocecal valve (ICV).

Loss of Colon

• Loss of colonic brake
• Loss of water and electrolyte resorptive capacity
• Loss of ability to salvage calories from malabsorbed carbohydrates
Components of Adaptation

- Hyperplasia
- Dilatation
- Elongation

Increased surface area
Adaptation

Promoted by

Humoral factors

Luminal nutrients
Complications of Total Parenteral Nutrition

• Catheter-related
 – Loss of access
 – Sepsis

• Metabolic
 – Fluid and electrolyte imbalance
 – Abnormal glucose homeostasis
 – Cholestasis
Are These the Culprits?
Strategies to Enhance Adaptation and Maximize Nutritional Status

• Utilize trophic hormones
• Addition of soluble fibers to the feeding
• Acid blockade
• Zinc
• Sodium chloride
• Loperamide
What About Glutamine and Growth Hormone?

- Positive effect upon adaptation among adult subjects\(^9\)
- Less impressive results by others\(^{10,11}\)
- No controlled pediatric trials

What About GLP2 (and a Dipeptidyl Peptidase Resistant Analog)?

• Enterocyte-specific
• Production is confined to distal small bowel/proximal colon
• Has potent trophic effects12
• Adult trials have shown promising results for improved gastrointestinal (GI) function13

What About Soluble Fibers?
Advantages and Disadvantages of Various Fructans14

- Short-chain fructooligosaccharide (scFOS)
 - Rapid hydrolysis, which is advantageous in short gut patients with rapid transit
- Inulin
 - Relatively slow hydrolysis, which may render it useless
- Longer chain oligofructans
 - Fermentation pattern results in a lower concentration of butyrate

scFOS Fermentation

• Short-chain fatty acids are produced
 – *Enhance water and electrolyte absorption* – helpful in management of diarrhea
 – *Help create an acidic environment unfavorable to growth of some harmful pathogens*
 – *Preferred energy source for colon cells, helping to maintain GI tract integrity and function*
Most Important Strategy: Provide Enteral Nutrition

• Enteral nutrients
 – *Fuel for enterocytes – stimulating hyperplasia*
 – *Promote peristalsis – decreases overgrowth*
 – *Stimulate flow of GI secretions and secretion of humoral factors*
• Very little data on pediatric short bowel syndrome (SBS)
 – *Continuous enteral feeding is beneficial*\(^\text{15}\)
 – *Does continuous feeding predispose to translocation?*\(^\text{16}\)
• More data are available on intractable diarrhea
 – *Continuous enteral feeding is beneficial*\(^\text{17}\)
• An adult study showed improved protein, fat, and energy balance on continuous feedings or mixed feedings versus oral feedings\(^\text{18}\)

Type of Feeding

- Standard formula
- Breast milk
- Protein hydrolysate formula
- Amino acid formula
Standard Formula

- Increased permeability to intact proteins with mucosal injury
- SBS – dilated intestine, poor motility, bacterial overgrowth
- Allergic reactions to cow’s milk or soy protein are common
- Carbohydrate source (lactose)
Breast Milk

• Bolster immune system
• Contain growth factors
 – Epidermal growth factor and GLP2
• Induce protective colonic flora
• Shorter duration of parenteral nutrition

Protein Hydrolysate Formula

- Lower antigenicity
- Contains some medium-chain triglyceride (MCT) oil – does not require bile acids or micelles for absorption
- Lower peak bilirubin19

Amino Acid–Based Formula

• 2 infants weaned from TPN using a dilute elemental formula20
• 4 patients were able to wean from TPN after change to amino acid–based formula21
• Shorter duration of TPN19
• Effective in a small series of patients with SBS22

Optimal Fat Intake23

- 30% MCT: 70% long-chain triglyceride diet increased absorption from:
 - 23-58% preserved colon
 - 46-58% no colon

What If Medical Management Fails?
Autologous Gastrointestinal Reconstruction versus Transplantation
What Sort of Survival Can We Expect From Intestinal Transplantation
Patient Survival by Era

Children

Adults

Survival %

Months

n=1351

n=1012

1: 1985-1989
2: 1990-1994
3: 1995-1999
4: 2000-2005
5: 2006-2011

ITA Registry Report 2011 Sept 16, 2011 v1

Courtesy of David Grant, MD (presented at the XII International Small Bowel Transplant Symposium, 2011)
Conditional Long Term Survival by Transplant Type

$S(x)$

Months

ITA Registry Report 2011 Sept 16, 2011 v1

Courtesy of David Grant, MD (presented at the XII International Small Bowel Transplant Symposium, 2011)
Summary

• The principles of management
 – Advance enteral nutrition slowly, but in a determined fashion, providing adequate calories for growth, but not so much enteral nutrition that the child’s intestinal function will be compromised
 • A hydrolysate with structured lipids and scFOS makes physiologic sense
 • A free amino acid formula often works when hydrolysates fail
 – Minimize risks for life-threatening complications
 • Protect the liver
 • Protect the line
 • Avoid serious safety events
Case Report

• 7 ½-month-old female
• Born at 37 weeks gestation with *in utero* volvulus
• Presented in the newborn nursery with bilious vomiting in the first day of life
• Abdominal x-rays showed a high small bowel obstruction
Case Report (cont’d)

• At the time of exploratory laparotomy, she was found to have 45 cm of viable proximal intestine, approximately 3 cm of viable terminal ileum, an ICV, and a totally viable colon

• A primary jejunoileal anastomosis was performed
Questions

• What is the potential for adaptation in this near-term child vs. a premature?
• What is in her favor?
• What is the likelihood for adaptation?
• Is the presence of a viable ileum, ICV, and colon common in this disorder?
Questions

• Would most pediatric surgeons do a primary anastomosis?
• What do you predict will happen?
Case Report (cont’d)

• The patient developed a small bowel obstruction and jejunal perforation proximal to the obstruction
• An end ileostomy and Broviac catheter were placed
Case Report (cont’d)

• After recovering from the perforation, was started on parenteral nutrition and on oral feedings with Pregestimil® ad libitum
Questions

• What type of formula would you use?
• What laboratory tests would you follow?
• What would you predict would happen if the child gets bolus feedings?
Case Report (cont’d)

- The child required admission to her local hospital twice for hyponatremic dehydration
- She had another “adhesive” obstruction requiring lysis of adhesions
- She grew poorly, gaining an average of 10 g daily
- At 4 months of age, a percutaneous gastrostomy was placed
Questions

• Who among us would do a percutaneous gastrostomy on this infant?
• How would you feed her now?
Case Report (cont’d)

• She was started on Neocate® at a concentration of $\frac{1}{2}$ kcal/mL
• Her enteral caloric intake was 25 kcal/kg daily
• Her TPN provided 62 kcal/kg daily
• She received 2 g/kg daily of lipid
• She received 3 g/kg daily of protein
• She received 2 meq/kg daily of sodium
• She had an episode of gram-negative sepsis and an episode of Candida sepsis
Question

• What do you predict will happen?
Case Report (cont’d)

• She continued to gain less than 10 g daily
• She became progressively more jaundiced
• She developed hepatosplenomegaly
• She developed a gastric ulcer that bled enough to require a blood transfusion
• Her ileostomy output was 300 mL daily
Questions

• How would you treat the ulcer?
• How would you manage the ileostomy output?
Case Report (cont’d)

• She was placed on sucralfate
• She was placed on ursodiol
• She was placed on diphenoxylate/atropine
Physical examination

- Wt: 5.6 kg (< 3rd %tile), Ht: 65 cm (15th %tile), occipitofrontal circumference 41.5 cm (< 10th %tile)
- Scleral icterus was present
- She was deeply jaundiced
- Liver was palpable 3 cm below right costal margin; liver was 3+ firm; spleen was palpable 5 cm below left costal margin
- No peripheral edema; no petechiae; no ecchymoses; no palmar erythema; no caput; no telangiectases
Case Report (cont’d)

• Laboratory tests
 – Normal Na, K, Cl, CO₂, blood urea nitrogen, creatinine
 – Total protein: 4.7 mg/dL
 – Albumin: 2.6 mg/dL
 – Bilirubin total/direct (T/D): 9.3/6.1 mg/dL
 – Alanine transaminase: 322; γ-glutamyl transpeptidase: 183
 – International normalized ratio: 1.3
Questions

• What is her estimated Na requirement?
• Will her liver recover?
• What should be done with her nutrition?
• Does she need surgery? What kind of surgery?
Questions

• What other laboratory tests would you get?
Case Report (cont’d)

- Urine electrolytes and specific gravity (SG)
 - Na: < 5 meq; K: 38 meq; SG: 1.025
- Prealbumin: 11 mg/dL
- Triglycerides
 - 322 mg/dL
- Factor 5 and 7
 - Factor 5: 63%
 - Factor 7: 56%
Case Report (cont’d)

• We progressively increased enteral caloric intake (full strength formula)

• We “fine tuned” TPN
 – *Increased zinc; decreased copper*
 – *Added carnitine*
 – *Decreased lipid to 1 g/kg daily*

• We asked our surgeon to “take down” the jejunostomy
• The patient’s nutrition improved
 – Average wt gain: 35 g daily
 – Albumin increased to 3.2 mg/dL and prealbumin to 22 mg/dL

• Cholestasis improved
 – Bilirubin T/D was 2.6/1.4 mg/dL by the time she was receiving 75% of her nutrition enterally

• Patient came completely off TPN
What Do You Predict Will Happen?
Potential “Landmines” That SBS Patients Must Avoid, Even Though TPN Is No Longer Necessary

- Growth failure
- Vitamin B_{12} deficiency
- D-lactic acidosis
- Hyperammononemia
- Gall stones
- Postnecrotic cirrhosis and portal hypertension
- Oxalate renal stones
- Anastomotic ulcers at the jejunocolonic anastomosis
Case Report (cont’d)

• This patient, now 8 years of age, has experienced no sequellae of SBS
Ann Scheimann, MD, MBA
Associate Professor of Pediatrics
Johns Hopkins School of Medicine
Baltimore, MD

Overview of Obesity and Bariatric Nutrition
Objectives

• Provide an overview of the pathophysiology, genetics, and medical complications associated with the development of obesity during childhood

• Outline the major bariatric surgery procedures and general potential nutritional risks

• Provide an overview of the most common micronutrient deficiencies associated with bariatric procedures and review possible treatment strategies
Components of Daily Energy Expenditure

Thermic effect of feeding

- Sedentary Person (1800 kcal/d): 8% Thermic effect of feeding, 75% Energy expenditure of physical activity

- Physically Active Person (2200 kcal/d): 8% Thermic effect of feeding, 60% Energy expenditure of physical activity

Energy expenditure of physical activity

- Sedentary Person: 17%
- Physically Active Person: 32%

Resting energy expenditure

- Sedentary Person: 75%
- Physically Active Person: 60%

Obesity Results From Long-Term Positive Energy Balance
Regulation of Food Intake

Central Signals

Stimulate
- NPY
- Orexin-A
- AGRP
- Dynorphin
- Galanin
- CB1

Inhibit
- α-MSH
- CART
- CRH/UCN
- NE
- GLP-I
- 5-HT

Peripheral signals
- Glucose
- CCK, GLP-1, Apo-A-IV
- Vagal
- Insulin
- Ghrelin
- Leptin
- Cortisol

Peripheral organs
- Gastrointestinal tract
- Adipose tissue
- Adrenal gland

External factors
- Emotions
- Food characteristics
- Lifestyle behaviors
- Environmental cues

Medical Complications of Obesity

- Pulmonary disease
 - abnormal function
 - obstructive sleep apnea
 - hypoventilation syndrome
- Nonalcoholic fatty liver disease
 - Steatosis
 - Steatohepatitis
 - Cirrhosis
- Gall bladder disease
 - Gynecologic abnormalities
 - abnormal menses
 - infertility
 - polycystic ovarian syndrome
- Osteoarthritis
- Skin
- Gout
- Idiopathic intracranial hypertension
- Stroke
- Cataracts
- Coronary heart disease
 - Diabetes
 - Dyslipidemia
 - Hypertension
- Severe pancreatitis
- Cancer
 - breast, uterus, cervix
 - colon, esophagus, pancreas
 - kidney, prostate
- Phlebitis
 - venous stasis
Organic Causes of Obesity

- Somatic dysmorphic syndromes
- Central nervous system insult
- Endocrinopathy
Genetic Disorders and Childhood Obesity

<table>
<thead>
<tr>
<th>Syndrome</th>
<th>Locus</th>
<th>Select Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>POMC</td>
<td>2p23.3</td>
<td>Early onset obesity, red hair, adrenocorticotropic hormone deficiency, hyperphagia</td>
</tr>
<tr>
<td>Carpenter</td>
<td></td>
<td>Acrocephaly, polydactyly, syndactyly, short stature, high palate, hypogonadism, heart anomaly</td>
</tr>
<tr>
<td>Alström</td>
<td>2p13</td>
<td>Retinitis pigmentosa, nerve deafness, acanthosis nigricans, male hypogonadism</td>
</tr>
<tr>
<td>Laurence-Moon-Bardet-Biedl</td>
<td>11q13 and 16q21</td>
<td>Early onset obesity, retinitis pigmentosa, moderate mental retardation (MR), polydactyly, deafness, hypogonadism, obsessive compulsive disorder</td>
</tr>
<tr>
<td>Cohen</td>
<td>8q22</td>
<td>Mild MR, microcephaly, short stature, low hairline, heart anomalies</td>
</tr>
<tr>
<td>Albright Hereditary Osteodystrophy Type 2</td>
<td>15q11-13; abnormal PTH adenylase cyclase complex</td>
<td>Pseudohypoparathyroidism, vitiligo, hypothyroidism, precocious puberty, short stature, brachydactyly, polydactyly, hypocalcemic tetany, mild MR</td>
</tr>
<tr>
<td>Prader-Willi-Labhart</td>
<td>Paternal 15q11-13</td>
<td>Small hands and feet, short stature, MR, cryptorchidism, hypothalamic hypogonadism</td>
</tr>
</tbody>
</table>

³Adapted from Haqq AM. In: Pediatric Obesity: Etiology, Pathogenesis and Treatment, Freemark M, ed. New York: Springer; 2010; 47-64.
Principles of Bariatric Procedures

- Creation of microgastria
- Bypass of proximal small bowel
 - Malabsorption
 - ? Alteration in bacterial flora
- Combination of both
Criteria for Adolescent Bariatric Surgery

- Fail more than 6 months of organized weight management
- At or near physiologic maturity
- Severely obese (body mass index (BMI) ≥ 35*-40) with serious obesity comorbidities or BMI ≥ 40*-50 with less serious comorbidities
- Commitment to comprehensive medical and psychological evaluations pre- and postoperation
- Capable and willing to adhere to nutrition requirements
- Avoid pregnancy for at least 1 year postoperation
- Have sufficient capacity to provide informed assent
- Supportive social environment/resources

Contraindications to Consideration of Bariatric Surgery

- Medically correctable cause of obesity
- Substance abuse problem within the past year
- Medical, psychiatric, cognitive inability to comply with required dietary and medication regimen
- Current lactation, pregnancy, or planned pregnancy within 1-2 years of surgery
- Inability of patient/parents to fully comprehend the surgical procedure, medical consequences, and required long-term surveillance

Nutrient Absorption in the Gastrointestinal Tract

<table>
<thead>
<tr>
<th>Stomach</th>
<th>Duodenum</th>
<th>Jejunum</th>
<th>Ileum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>Calcium</td>
<td>Thiamin</td>
<td>Vitamin C</td>
</tr>
<tr>
<td>Copper</td>
<td>Iron</td>
<td>Riboflavin</td>
<td>Folate</td>
</tr>
<tr>
<td>Iodine</td>
<td>PO₄</td>
<td>Niacin</td>
<td>B₂₃₂₂</td>
</tr>
<tr>
<td>Flouride</td>
<td>Mg</td>
<td>Pantothenate</td>
<td>D</td>
</tr>
<tr>
<td>Intrinsic factor</td>
<td>Copper</td>
<td>Biotin</td>
<td>K</td>
</tr>
<tr>
<td>ETOH</td>
<td>Selenium</td>
<td>Folate</td>
<td>Mg</td>
</tr>
</tbody>
</table>

- Calcium
- Iron
- PO₄
- Mg
- Copper
- Selenium
- Thiamin
- Riboflavin
- Niacin
- Pantothenate
- Biotin
- Folate
- B₆
- ADEK
- Vitamin C
- Peptides

Adjustable Gastric Band

• Adjustable restrictive procedure
• Expected weight loss 30-50% of excess weight
 – Nibblers/sweet drinkers: less weight loss
 – Frequent band adjustment
• Nutritional deficiencies
 – Iron most common
 – Vitamin D second most likely
Sleeve Gastrectomy

- Residual gastric structures minimize dumping beyond initial postoperative phase
- Excess weight loss 72% at 4 years; 55% at 6 years (adult)⁶
- Nutritional deficiencies⁷
 - Anemia (26%)
 - Iron >> folate > B₁₂
 - Vitamin D↓/↑parathyroid hormone (PTH) (39%)
 - Hypoalbuminemia (15%)
 - B₁ (11%)

Roux-en-Y Gastric Bypass (RYGBP)8

- Expected weight loss 60-70% of excess weight
 - Nutritional issues
 - Fe most common deficiency (50% by 2 years)
 - B_{12} 2nd most common deficiency (30% at 1-9 years)
 - Vitamin D deficiency common
- Dumping risk 40-60%

Biliopancreatic Diversion (BPD)

- Rarely done in adolescents
- Excess weight loss 82% at 10 years\(^9\)
- 72% fat and 25% protein malabsorption; no carbohydrate malabsorption\(^7\)
 - Protein/calcium malnutrition 7-12%
- Multiple vitamin and mineral deficiencies\(^8\)
 - ADEK twice daily
 - > 2400 mg calcium citrate daily
 - Cu, Zn

Hallmarks of Thiamin Deficiency

• Burning feet
• Numbness and tingling starting in the feet and occasionally progressing to hands
• RED FLAG: persistent emesis
• Diabetes: increase thiamin needs 5-fold
Wernicke’s Encephalopathy

Visual abnormalities
- Ophthalmoplegia
- Nystagmus
- Ptosis
- Diplopia

Altered mental status
- Disorientation
- Apathy
- Memory loss

Ataxia
Peripheral neuropathy
Treatment of Thiamin Deficiency

• Give B$_1$ with intravenous (IV) dextrose if suspect
• B$_1$ with B-complex, Mg for maximum absorption and neurologic function
• Early symptoms resolve with oral B$_1$ until symptoms disappear
• 50-100 mg daily IV or intramuscularly for advanced neuropathy or protracted vomiting
Clinical Features of B_{12} Deficiency

- Numbness and tingling of extremities
- Macrocytic anemia
- Pernicious anemia (late stage)
- 1/2 of patients with symptoms of deficiency have normal B_{12} levels
- Methylmalonic acid more accurate for screening

Treatment: 700-2000 mcg weekly for several weeks
Folic Acid

• Etiology of deficiency
 – *Inadequate intake*
 • Stores deplete in a few months postoperation
 – *Noncompliance with supplements*
 – *Malabsorption*
 – *Medications*

• Symptoms
 – *Early*: fatigue, weakness, headaches, palpitations, diarrhea, and red painful tongue
 – *Chronic*: smooth, shiny tongue

• Assessment
 – *Homocysteine with red blood cell folate* most sensitive indicator of status

• Treatment
 – *1 mg daily folic acid*
Calcium and Vitamin D

• Absorption of calcium is facilitated by vitamin D in an **acidic** environment

• Low acid environment after gastric resection results in poor calcium carbonate absorption

 – *Calcium citrate is absorbed 22-27% better than calcium carbonate, regardless of meal status*¹⁰

• Sleeve gastrectomy series – 65 patients on multivitamin infusion and calcium carbonate¹¹

 – 1/3 had vitamin D deficiency and increased PTH

• Treat with vitamin D and calcium citrate

Copper Deficiency

- No reports with sleeve gastrectomy and banding
- Occasionally seen with RYGBP and BPD
 - 9.6% in adult RYGBP series12
 - 50% in adult BPD series13
- Symptoms
 - Numbness, tingling of hands and fingers
 - Gait disturbance
 - Anemia
- Treatment with copper supplement

Obesity and Bariatric Case Challenges
Case 1

• 4-year-old Latin American male with mild developmental delay referred by primary medical doctor for mildly elevated liver enzymes

 – Strong family history of diabetes
 – Several aunts are legally blind
 – Pertinent examination findings: body mass index: 35; moderate acanthosis; hepatomegaly
Physical Findings

Case 2

• 17-year-old girl status post RYGBP 2 years ago with symptoms of arm pain, back pain, weakness, and falling
 – Lost 87% of excess body weight during year 1
 – Stomach cramping; nausea with protein rich foods
 – Referred by primary care physician to neurologist and recently diagnosed with peripheral neuropathy
 – Complete blood count with anemia
 • Iron studies suggestive of iron deficiency
Copper
Special Thank You

- Margaret Furtado, MSRDLDN
- Cristina Germond, PhD
- Amy Manela
- Margaret Stallings
- Nutrition committee
- NASPGHAN Foundation
- Nutricia
- ATTENDEES!!!
Questions?
Perioperative Nutrition
Does Nutritional Status Matter?
Malnutrition Increases Operative Mortality

- **Studley**
 - Mortality in elective surgery for peptic ulcer
 - 3.5% if < 20% weight loss
 - 33% if ≥ 20% weight loss

- **Meguid et al.**
 - Mortality in abdominal surgery for malignant disease
 - Well-nourished: 4%
 - Malnourished: 23% (includes weight loss > 10%)

1 Studley HO. JAMA. 1936;106:458-460.
Preoperative Nutritional Status – Kids3-6

- 2-year survival after liver transplant related to weight Z score prior to transplant
 - $57\% < -1$
 - $95\% > -1$

- Hospital stay and infection after cardiac surgery related to weight Z score and serum albumin, respectively

- Neurosurgical shunt surgery complications related to serum albumin

Mortality rate (%) for different Glasgow Coma Scores (GCS) levels:

- GCS 13-15 (n=48): 0%
- GCS 9-12 (n=36): 5.2%
- GCS 3-8 (n=40): 7.4%

GCS = Glasgow Coma Score

Does Nutritional Intervention Matter?
Perioperative Enteral Versus No Treatment Meta-Analysis7

- Fewer infections with enteral
- Tendency for fewer intra-abdominal and intrathoracic complications
- No differences in mortality
- No differences in total/major/wound complications

Perioperative Enteral Versus Parenteral Nutrition Meta-Analyses7,8

- Fewer infectious complications
- Fewer major complications
- Fewer intra-abdominal and intrathoracic complications
- Shorter hospitalization

ESPEN Guideline on Enteral Nutrition: Surgery9,10

• Indicated if oral intake
 – Likely inadequate > 14 days (7-10 days postoperation)
 – \(\leq 60\% \) recommended for > 10 days

• Contraindications
 – Intestinal obstruction/ileus
 – Severe shock
 – Intestinal ischemia

ESPEN Guideline on Enteral Nutrition: Surgery9,10

• Preoperatively indicated
 – *Weight loss > 10-15% within 6 months*
 – *Body mass index (BMI) < 18.5 kg/m2*
 – *Serum albumin < 3 g/dL (not liver/renal)*

• Requires 7-10 days treatment

• Not indicated otherwise

10Awad S and Lobo DN. *Curr Opin Anaesthesiol.* 2011;24:339-348.
ESPEN Guideline on Parenteral Nutrition: Surgery10-12

- Presumes enteral feeding not tolerated
- Preoperatively indicated if
 - Weight loss > 10-15% in 6 months
 - BMI < 18 kg/m2
 - Serum albumin < 3 g/dL (not liver/renal)
- Requires 7-10 days treatment
- Improved postoperative outcome

12Gustafsson UO and Ljungqvist O. Curr Opin Clin Nutr Metab Care. 2011;14:504-509.
Postoperative parenteral nutrition (PN) indicated if

- Malnourished and unable to receive adequate intake enterally for ≥ 7 days

Some enteral intake is preferable

\(^{10}\) Awad S and Lobo DN. *Curr Opin Anaesthesiol*. 2011;24:339-348.

Pediatric Randomized Trial(s)

• Marín13
 – $n = 63$ with peritonitis due to perforated appendix
 – Randomized to PN (24-48 hours postoperation) or control for 5 days
 – PN had greater nitrogen balance and serum insulin-like growth factor-1

ERAS – Enhanced Recovery After Surgery14

• Effort to reduce hospital stay after colonic resection
• n = 60
 – Preoperation – epidural catheter for pain treatment
 – Postoperation
 • 0-24 hours
 – No nasogastric tube
 – Oral protein drinks; normal food allowed
 – Cisapride
 • 24-48 hours
 – Normal diet with protein drinks
 • 48 hours
 – Removal of epidural catheter
 – Discharge

Consensus Review of ERAS15

- 20 guideline points backed by grade A evidence
- Preoperative nutrition
 - \textit{Limit fasting to 2 hours for liquids and 6 hours for solids}
 - \textit{Patients should receive carbohydrate loading}
 - Reduces postoperative insulin resistance
 - Results in accelerated recovery and shorter hospitalization
 - Mechanism not completely elucidated – ? decreased inflammatory response

15Lassen K, et al. \textit{Arch Surg.} 2009;144:961-969.
Randomized Trial of ERAS16,17

- n = 597 patients undergoing elective colorectal resection
- Control group fasted preoperatively and did not receive postoperative intake until flatus passed
- ERAS group
 - Less insulin resistance; lower serum cytokines
 - Shorter hospital stay (1 day) and 10% reduction in cost
 - No differences in complications
- Matches finding of previous meta-analysis

Specialized Nutrition Support Meta-Analyses10,18-20

- Fish oil or glutamine dipeptide (given in PN) decreased
 - Length of stay
 - Infection

- Immunonutrition (arginine and/or glutamine and/or ω-3 fatty acids and/or nucleotides) decreased
 - Complications
 - Infection
 - Hospitalization (mean 2.1 days)

Oral carbohydrate Drinks 2 h pre-induction

Assessment of nutritional risk/status

- Normal or mild-moderate malnutrition
 - Enteral immuno-nutrition (5-7 days)
- Severe malnutrition
 - EN/PN (7-14 days), Enteral immuno-nutrition (5-7 days)

Preoperative

Preanesthetic

Postoperative

Multimodal ERAS interventions, early nutrition within 24 h of surgery, parental glutamine supplementation, enteral immuno-nutrition

© 2012, NASPGHAN NUTRITION UNIVERSITY
Case Study

• 12-year-old African American male with familial pancreatitis presents with 10 days of increasing abdominal pain and decreased appetite. Physical examination, blood work, and abdominal ultrasound consistent with pancreatitis. His usual hospital stay is 7-10 days.
Questions?
Glenn T. Furuta, MD
Professor of Pediatrics
University of Colorado School of Medicine
Director, Gastrointestinal Eosinophilic Diseases Program
Children’s Hospital Colorado and National Jewish Health
Aurora, CO

Food Allergies and Eosinophilic Gastrointestinal Diseases
Amazing Mucosal Surfaces!¹

• Imagine a sheet of cells
• One side—everything you eat and 2 kg of bacteria (10^{14})
• Other side—sterile

2-Year-Old Boy

- One month history of:
 - Vomiting
 - Irritability with eating
 - Food aversion
 - Slow weight gain

- Comorbid conditions
 - Eczema
 - Anaphylactic food allergy (FA) to peanut

- Failed treatments
 - Proton pump inhibitors (PPIs)
 - Formula changes

2-Year-Old Boy (cont’d)2,3

- Diagnostic evaluation
 - \textit{Upper endoscopy}
 - Linear furrowing
 - \textit{Pathology}
 - 47 eosinophils(eos)/high-powered field (HPF) in proximal and distal
 - Basal cell hyperplasia
 - Normal gastric and duodenal mucosa
 - \textit{Normal pH impedance study}

2Newton J, et al. \textit{Gastroenterol Nurs.} 2011;34:147-152.
17-Year-Old Boy

• 3-year history of:
 – Dysphagia
 – Food sticking, especially pills
 – Chewing food thoroughly, especially meat
 – Drinking fluids needed to wash food down
 – Heartburn

• Comorbid history of FAs

• Family history of allergies, food sticking

17-Year-Old Boy (cont’d)²

• Diagnostic evaluation
 – *Barium esophagram*
 • Proximal esophageal stricture
 – *Upper endoscopy*
 • Proximal web and ring trachealization

• Diagnostic evaluation
 – *Pathology*
 • 48 eos/HPF
 • Degranulation and microabscesses
 • Normal gastric and duodenal mucosa

Eosinophilic Esophagitis: Update on Consensus Recommendations

Eosinophilic Esophagitis in Children and Adults: A Systematic Review and Consensus Recommendations for Diagnosis and Treatment

Clinical reviews in allergy and immunology

Eosinophilic esophagitis: Updated consensus recommendations for children and adults

LIACOURAS ET AL
Eosinophilic esophagitis (EoE) is a clinicopathologic disease
Clinically characterized by esophageal dysfunction
Pathologically 1 or more biopsies show eos predominant inflammation (≥ 15 eos in peak HPF)
Histopathology is isolated to esophagus
Other causes need to be excluded
“PPI-responsive esophageal eosinophilia”
Diagnosis made by clinicians
Rarely < 15 eos/HPF (if other clinicopathologic features present)

“Eosinophilic esophagitis represents a chronic, immune/antigen mediated, esophageal disease characterized clinically by symptoms related to esophageal dysfunction and histologically by eosinophil-predominant inflammation.”

Food Allergic Disease

- Immune-mediated reaction to a specific food product (protein), causing symptoms (gastrointestinal tract, skin, nose, eyes, or lungs)
- Reproducible reaction to the food
- Resolves with removal of antigen
Bioavailability of Food Allergens

• Preingestion
 – Ripening
 – Cooking
 – Enzyme treatment
 – Addition of ingredients (spices, preservatives, etc.)
 – Combinations of the above

• Postingestion
 – Complex interactions with other ingested foods
 • Matrix effects
 – Enzymes
 – pH changes
 – Other host factors (inflammation, gut motility)
Allergy Testing

• Food sensitization = food specific immunoglobulin E (IgE) detected by skin or blood testing

• FA = reproducible physical response to IgE-mediated food
Rationale for Prick Skin Testing With Freshly Prepared Extracts

- Instability of selected fruit and vegetable allergens
- Lack of available commercial extract
- Check negative results obtained with a commercial extract in a patient with highly suggestive history
- Detection of unexpected ingredient
- These extracts are not standardized

Courtesy of Dan Atkins, MD.
Skin Testing to Food Allergens

Courtesy of Dan Atkins, MD.
Skin prick testing (SPT)\(^5\)

- Safe and useful for diagnosis of IgE-mediated FA
- Reagents and methods are not standardized
- Positive SPT correlates with the presence of allergen-specific IgE bound to mast cells
- Compared with oral food challenges, they have low specificity and low positive predictive value for making an initial diagnosis of FA

Allergen-specific serum IgE5

• Useful for diagnosis of IgE-mediated FA, but not diagnostic

• “Cutoff” levels, defined at 95% predictive values, may be more predictive than SPTs of clinical reactivity in certain populations

• Different assays yield variable results

Guidelines for the Diagnosis and Management of Food Allergy in the United States: Report of the NIAID-Sponsored Expert Panel

Allergen-specific serum IgE\(^5\)

- Predictive values vary among studies
 - Patient selection (patients’ ages)
 - Clinical disorder studied
- Negative test in face of highly suggestive history—consider medically supervised food challenge
- Quality of evidence: moderate
- Contribution of expert opinion: significant

Variability in Skin Test Results

- Allergen extract
- Device
- Skin test technician
- Difficulty with application
- Sensitivity of skin to pressure
- Changes in level of sensitization
- Medications
Frequency of Allergic Disease in EoE Patients

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Patients</th>
<th>AS%</th>
<th>Allergic Rhinitis (AR)%</th>
<th>Atopic Dermatitis %</th>
<th>FA (Ana)%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spergel 2008<sup>6</sup></td>
<td>620</td>
<td>50</td>
<td>61</td>
<td>21</td>
<td>5.7</td>
</tr>
<tr>
<td>Assa’ad 2007<sup>7</sup></td>
<td>89</td>
<td>39</td>
<td>30</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>Sugnanam 2007<sup>8</sup></td>
<td>45</td>
<td>66</td>
<td>93</td>
<td>55</td>
<td>24</td>
</tr>
<tr>
<td>Guajardo 2002<sup>9</sup></td>
<td>39</td>
<td>38</td>
<td>64</td>
<td>26</td>
<td>23</td>
</tr>
<tr>
<td>Roy-Ghanta 2008<sup>10</sup></td>
<td>23</td>
<td>26</td>
<td>78</td>
<td>4</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Rationale for Allergy Evaluation in EoE

• Most patients (~ 80%) have coexistent asthma, eczema, AR, or FA
• Most patients are sensitized
• Seasonal variability of symptoms
• Improvement on elimination diets
1995 Esophageal Eosinophilia Responds to Elemental Diet

Eosinophilic Esophagitis Attributed to Gastroesophageal Reflux: Improvement With an Amino Acid–Based Formula

KEVIN J. KELLY,*·† AUDREY J. LAZENBY,§ PETER C. ROWE,* JOHN H. YARDLEY,‖
JAY A. PERMAN,*·† and HUGH A. SAMPSON*·‡

Divisions of *Pediatric Gastroenterology/Nutrition and §Pediatric Allergy/Immunology and Departments of *Pediatrics and ‖Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; and "Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama

Dietary Restriction vs. Elimination

<table>
<thead>
<tr>
<th>Dietary Restriction</th>
<th>Dietary Restriction</th>
<th>Dietary Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empiric - Kagalwalla</td>
<td>Directed - Spergel</td>
<td>Liacouras</td>
</tr>
<tr>
<td>74</td>
<td>77</td>
<td>95</td>
</tr>
<tr>
<td>13.6</td>
<td>12.8</td>
<td>1.1</td>
</tr>
</tbody>
</table>

% of patients clinically and histologically improved

of esophageal eosinophils after treatment

Two Stories

- “Fear of Feeding”
- “Reluctant Carnivore”
2-Year-Old Boy

• Medications
 – Lansoprazole 7.5 mg twice a day—to be weaned
 – Fluticasone propionate 44 mcg 2 puffs swallowed twice a day
 – Epinephrine 0.15 mg/delivery

• Allergy
 – Positive skin prick and serum IgE testing led to further diet restrictions of milk, soy, egg, pork, and wheat
2-Year-Old Boy

• Nutrition
 – *Elemental formula supplements*
 – *Addition of extra calories to foods*
 – *Calcium and vitamin D supplements*

• Feeding
 – *Food aversion evaluation*
17-Year-Old Boy

• Medications
 – *Esomeprazole magnesium* 40 mg twice a day—
 to be weaned
 – *Fluticasone propionate* 220 mcg 2 puffs
 swallowed twice a day
 – *Epinephrine* 0.3 mg/delivery

• Allergy
 – *Positive SPT* led to additional diet restrictions of
 oats, tree nuts, and potatoes
17-Year-Old Boy

• Nutrition
 – FA education
 – Increased fruit/vegetable intake
 – Multivitamin added
Questions?
Praveen S. Goday, MBBS, CNSC
Associate Professor
Medical College of Wisconsin
Milwaukee, WI

Failure to Thrive
Objectives

- Definition
- Prevalence
- Normal variants masquerading as failure to thrive (FTT)
- Medical risk factors
- Management
Definition1,2

- FTT
 - More likely (and more accurately) described in developing countries as protein-energy malnutrition
 - Not a disease
 - Symptom representing the final common pathway of medical, psychosocial, and environmental processes

FTT: Definitions

1. Weight < 75% of median weight for chronologic age (Gomez criterion)
2. Weight < 80% of median weight for length (Waterlow criterion)
3. Body mass index for chronologic age < 5th centile
4. Weight for chronologic age < 5th centile
5. Length for chronologic age < 5th centile
6. Weight deceleration crossing more than 2 major centile lines from birth until weight within the given age group
7. Conditional weight gain = lowest 5%, adjusted for regression towards the mean from birth until weight within given age group

• Is 3% of the population below the 3rd percentile?
• Is weight alone enough?
 – Proportionately small children are often not failing to thrive
 – Weight-for-length or body mass index (BMI) < 3rd percentile may be a better marker of FTT
Waterlow Classification

<table>
<thead>
<tr>
<th></th>
<th>Acute Malnutrition (% of Ideal Body Weight)</th>
<th>Chronic Malnutrition (Height-for-Age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>> 90%</td>
<td>> 95%</td>
</tr>
<tr>
<td>Mild</td>
<td>80-90%</td>
<td>90-95%</td>
</tr>
<tr>
<td>Moderate</td>
<td>70-80%</td>
<td>85-90%</td>
</tr>
<tr>
<td>Severe</td>
<td>< 70%</td>
<td>< 85%</td>
</tr>
</tbody>
</table>

The Use of Z-Scores

- Z-scores allow more precision in describing anthropometric status

\[z\text{-score} = -3.5 \]
\[z\text{-score} = -2.1 \]
• What is stable growth during infancy?
 – 30% of full-term infants cross 1 percentile and 23% cross 2 percentiles between birth and 2 years
 – Study correlated weight at age 1 year with weight between 4-8 weeks than at birth

• Growth curves are averages that are mathematically smoothed out

Centers for Disease Control and Prevention Recommendations

- 0-2 years: use World Health Organization (WHO) growth standards
 - Regardless of type of feeding
 - Use the 2.3rd and 97.7th percentiles (labeled as the 2nd and 98th percentiles) to identify children with “abnormal” growth

- 2 years and older: use Centers for Disease Control and Prevention growth charts

- Fewer US children will be identified as underweight using the WHO charts

- Slower growth among breastfed infants during ages 3-18 months is normal

• Danish birth cohort
 – Significant undernutrition = 3% under the age of 1 year
 – Poor concurrence among all 7 criteria
 – None of the FTT children met all the criteria
 – Most met only one criterion
 – Most single criteria
 • Identified less than half of these children
 • Or included too large a proportion of the total cohort

Normal Variants Masquerading as FTT
Normal Variants Masquerading as FTT

- Genetic short stature
 - Short parents
 - Low percentiles, but do not cross percentiles
- Midparental height
 - To the average of the parents’ heights
 - Add 2.5 inches if male
 - Subtract 2.5 inches if female
 - This is the median height expected for that child
 - 8.5 cm on either side of the median will give 2 standard deviations on either side
Normal Variants Masquerading as FTT (cont’d)

• Ex-premature infant
 – Normal birth weight, if corrected for gestation
 – Low percentiles if uncorrected, but may show catch-up growth

• Catch-down growth
 – Above expected birth weight
 – Initial fall in percentiles, then follow percentiles
Small for Gestational Age8,9

- The most common definition of small for gestational age refers to a weight below the 10th percentile for gestational age
- \(\sim \) 90\% of infants exhibit spontaneous catch-up growth
- Appropriate weight gain ("Goldilocks" amounts) is associated with the best neurologic outcomes
 - \(\uparrow \uparrow \) weight gain (\(> 5000 \text{ g in the first 16 weeks of life} \)) associated with \(\downarrow \) cognition and \(\uparrow \) BMI at age 7 years

Practical “Definition” of FTT

• Weight-for-length or BMI z-score < –2.0
• Poor or no weight gain over a period of time that varies according to the age of the child
 – In general, the younger the child, the shorter the interval in which there is little or no weight gain
• Significant downtrend in weight percentiles
• Additional considerations:
 – Assessment of parental size/growth
 – Correction for prematurity (where applicable)
Medical Risk Factors10-12

- < 5% of children who fail to thrive have organic disease
- Does failure to find an organic cause for FTT = neglect?
- Only 5-10% of FTT infants are followed by child protection services

11Wright C and Birks E. \textit{Child Care Health Dev}. 2000;26:5-16.
A Simple Approach to FTT

- Inadequate intake of calories
- Loss of calories
 - Vomiting, maldigestion, malabsorption
- Increased caloric need
 - Cardiorespiratory disease, liver disease, renal disease, chronic infections
- Inability to utilize calories consumed
 - Chromosomal, endocrine, and metabolic disorders
Inadequate Food Intake

• Failure of food intake underlies most cases of FTT
 – Lack of available food
 – Lack of knowledge about infant feeding
 – Maternal depression
 – Specific dietary beliefs

• Parent-child interaction
 – Parent not offering food
 – Child refusing to take food

• Specific organic issues in the infant
Approach to the Patient With FTT
FTT: History

- Pregnancy and labor
- Birth weight
- Early neonatal history
- Feeding issues in the first year of life
- Immunizations
- Development
- Medical or surgical illnesses
- Frequent infections
FTT: Growth and Nutrition History

- Plot previous points
- Feeding behavior and environment
- Allergies to foods
- Quantitative assessment of intake
 - 24-hour food recall
 - 3-day diet record
FTT: Social History

- Who feeds the child?
- Life stresses in the family
- Social and economic supports
- Perception of growth failure as a problem
The Physical Examination
FTT: Measurements

• Vital for accurate assessment of growth

 • Length
 – *Length board until age 2 years*

 • Weight
 – *< 24 months*
 • Nude or in clean, dry diaper
 – *≥ 24 months*
 • Light clothing
Short Stature

• Causes
 – *Familial/constitutional*: 80%
 – *Medical causes*: 10%
 – *Idiopathic*: 5%
 – *Endocrine*: <5%

• Children with growth hormone deficiency are not usually malnourished

• In malnutrition, serum insulin-like growth factor-1 will be low

Laboratory Evaluations

- Most children with FTT do not need laboratory evaluations
- Laboratory evaluations
 - Significant FTT
 - FTT not due to inadequate calorie intake
- Common laboratory evaluations
 - Complete blood count, erythrocyte sedimentation rate
 - Metabolic panel, electrolytes
 - Anti–tissue transglutaminase (tTG) immunoglobulin A (IgA), serum IgA level
 - Fecal elastase
 - Urinalysis

Assessing Intake

• Have parents describe typical day
• Look for red flags
 – Excessive juice intake
 – Excessive milk intake
 – “Grazing”
Juice Versus Milk15,16

- Juice
 - 15 calories per ounce, no protein
 - Contributing factor to FTT
- Promote appropriate milk intake

AAP Recommendations

<table>
<thead>
<tr>
<th>Age</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 mos.</td>
<td>0</td>
</tr>
<tr>
<td>1 – 6 years</td>
<td>4 – 6 ounces</td>
</tr>
<tr>
<td>7 – 18 years</td>
<td>8 – 12 ounces</td>
</tr>
</tbody>
</table>

High Calorie Beverages

• Pediasure®, Boost®, Nutren Jr.®
 – 30 calories/ounce
 – Appropriate for children 1-10 years old
• Carnation Instant Breakfast® with whole milk
 – 30 calories/ounce
 – Cheaper than Pediasure ($0.50/packet)
• Whole milk with heavy whipping cream
 – 30 calories/ounce
 – Cheapest
Mealtime Behaviors

• Meals/snacks
 – *At table or in high chair*

• Structured meals and snacks
 – *No more than 20-30 minutes to eat/drink*
 – *Feed every 3 hours*

• Only water between meals and snacks
Zinc17

• Supplementation improves gains in height and weight

• Patients at risk for inadequate zinc intake
 – Mostly breastfed infant
 – Picky eater on cow’s milk
 – Dose: 0.5-1 mg/kg

• Most complete multivitamins
 – \(\frac{1}{2} \) tablet for 2- and 3-year-olds
 – Full tablet for \(\geq 4 \) years old

Management
Management

• Ensure that the child is failing to thrive
• Work out the basic reason for FTT
 – Inadequate calories
 – Loss of calories
 • Vomiting/diarrhea
 • Malabsorption
 – Increased caloric needs
 – Other
Inadequate Calories: Initial Steps

• Decrease or eliminate juice intake
• Regular meals and snacks
 – Feeding every 3 hours
 – Preferably in a high chair
 – Meals limited to 20 minutes
 – No feeding outside mealtimes, except for water
Inadequate Calories: Next Steps

• Increase calorie content of formula
• Increase caloric values of all foods
• In children with feeding disorders
 – Work with speech-language pathologist
 – Maximize intake by optimize feeds (eg) thickening
 – May need gastrostomy feeds
Inadequate Calories: Pediasure® or Its Equivalents

• In moderate or severe failure to thrive
• Unmotivated families
 — *Risk of child worsening if something is not done*
• Balance between Pediasure® and solid food
• Wean off Pediasure® at the first possible opportunity
Inadequate Calories: Loss of Calories

• Investigate and appropriately treat causes of vomiting and diarrhea
• Investigate for malabsorption if child is consuming sufficient calories
Inadequate Calories: Increased Caloric Needs

- Eliminate juice
- Eliminate grazing
- Maximally concentrate all solids and liquids
- Consider tube-feeding early
What Works?18

• Simple dietary advice may be all that is needed – but only rarely

• Long-term treatment and a follow-up plan
 – Nutritional advice
 – Behavioral modification
 – Social work intervention

Hospitalization

• May be necessary
 – When nothing else works
 – To show that child is not being fed at home

• Usually only of use in children under the age of 2-3 years

• Initially start with what is being done at home

• Change feeds and / or institute other therapy, if necessary
Follow-up

• More frequent follow-up
 – Very young children
 – Significant FTT

• Mode of follow-up
 – Weight check vs pediatrician visit vs dietitian vs pediatric GI
 – Needs to be individualized
Prognosis19-21

• Meta-analysis involving FTT children < 2 years of age
 – 3-point reduction in IQ in children at age 3 years
• Another meta-analysis
 – Less-exacting inclusion criteria
 – FTT in infancy is associated with adverse intellectual outcomes sufficient to be important
• A study of adolescents who had FTT in infancy failed to show any evidence of emotional deficit in cases compared with controls

Conclusions

- The diagnosis of FTT is based on a careful history
- Anthropometric measurements are important
- Cut out juice and grazing
- Work with a multi-disciplinary team
Case Studies
Case 1

- 15-month-old with FTT
- Breastfed through 13 months → then transitioned to whole milk
- Started Poly-vi-sol® as infant and still takes 1 cc daily
- Weight, length, and weight-for-length
 - Now below 3rd percentile for age
- Diet history
 - Never seems hungry
 - Loves sippy cup with whole milk – “never puts it down” – drinks 32 ounces whole milk daily
 - “Grazes” on crackers, pretzels, and other finger foods throughout the day
 - Takes only bites at mealtime
Case 2

• 8-year-old male
• Born at 32 weeks gestation; birth weight: 1.3 kg
• Otherwise healthy; no dietary concerns
• Poor growth
• No other historical concerns
• Normal physical examination
What should you do?
Case 3

• 15-month-old male with mild asthma
• Developmentally normal
• Takes cow’s milk and liquids without difficulty, but refuses solid foods
• No weight gain for 3 months
Questions?
Maria R. Mascarenhas, MBBS
Section Chief, Nutrition
Division of Gastroenterology, Hepatology and Nutrition
The Children’s Hospital of Philadelphia
Philadelphia, PA

Cystic Fibrosis
CF and Nutrition

• Improved survival: nutritional state correlates with outcome
• PI is marker for more severe genetic defect
• Energy imbalance: increased needs versus reduced intake
• Lung disease, airway inflammation & infection result in appetite suppression & increased energy expenditure
• Many descriptive studies looking at correlation of nutritional status & pulmonary function
 – improved survival is associated with changes in dietary management
 – declining FEV1 is strongly associated with increased mortality
• Goal is normal growth which depends on:
 – gastrointestinal, hepatic and pancreatic function
 – lung function
 – genetic potential
 – energy & nutrient intake
Benefits of Good Nutritional Status & CF

- A comparison of survival, growth and pulmonary function in patients with CF in 2 centers in Boston & Toronto
- Survival 9 years longer in Toronto center
- High fat diet with increased dose of pancreatic supplements
- Good weight and height percentiles
- Improved survival linked to good nutritional status

Of patients born between 1985 and 1989 (the earliest cohort shown here in green), 93.9 percent survived to age 15. For patients born between 1990 and 1994, 95.0 percent survived to age 15. With the exception of the 200-2004 cohort, successive birth cohorts show improved survival.
Pathogenesis of Nutritional Abnormalities in CF

- Energy losses:
 - Malabsorption (pancreatic, liver, intestinal)
 - GER
 - CFRD
 - Protein loss in sputum

- Energy intake: iatrogenic fat restriction, esophagitis, anorexia, feeding disorders, depression

- Energy needs: Increased
 - ? Primary defect
Nutritional Abnormalities in CF

- Malnutrition
- Growth failure
- Protein deficiency - infancy
- Micronutrient - vitamins A, E, K, C & D, EFAD, Na, Ca, Fe, Zn, Se, Mg, carotene, glutathione
- Delayed puberty
- Bone disease
Nutritional status as measured by CDC BMI Percentile has improved since 1990, and remains above the CF Foundation goal 7 until age 10. However, the downward trends begins in early childhood.

*BMI percentile are not calculated for patients less than 2 years of age.

Cystic Fibrosis Foundation Patient Registry 2010 Annual Data Report. Bethesda, Md.
FEV1 and BMI Outcomes

The data show that pulmonary function and nutrition status are highly correlated. Some centers are achieving the goals established in the CF Foundation Nutrition Guidelines.

FEV1 Percent Predicted vs. BMI Percentile in Patients 6 to 20 Years

FEV1 percent predicted is positively correlated with BMI percentile for patients 6 to 20 years of age (p<0.0001).
Energy Needs in CF

• Nutritional status (height & weight) is linked to survival
• Association between BMI % ile & FEV1
• Optimal energy intake important for care
• Individual variables: pulmonary exacerbation, maldigestion, malabsorption, pulmonary function, fat-free mass, gender, pubertal status, genetic mutation, age, liver disease, CFRD
• Daily calorie requirements: 110-200% of recommended intakes for normal individuals
• CFF nutrition consensus: equation is a starting point and use gains in weight, height, height velocity and fat stores to assess adequacy

CF: Protein Needs

- Limited information
- Protein intake correlates with overall caloric intake
- Studies on protein catabolism and protein deposition: varying results which may reflect differences in entry nutritional status and caloric intake during study
- Oral & enteral protein and caloric supplementation studies: conflicting results

Vitamin A

• Important for cellular integrity, growth, immune function & vision
• Excessive intake: bone and liver toxicity
• Status: serum retinol, serum retinol-binding protein, functional testing
• Serum retinol decreased in acute inflammatory states; not associated with disease severity
• No trial showing benefits of vit. A supplementation
• 1993: CF specific multivitamins contain vit. A
• Elevated retinol levels in children, adolescents & young adults
• Toxicity: serum retinyl esters

Vitamin E

• Important for normal development, cell membrane stability, prevention of hemolysis, antioxidant
• Deficient in patients with fat malabsorption
• Oxidative stress & diet high in PUFA may increase needs
 Deficiency in CF before development of CF specific vitamins
• Low level in PS
• Low levels in infants at diagnosis and during childhood
• Varying results effect of vitamin E and lung function
• Status: Vitamin E level; adjust dose based on levels

Vitamin D

- Important for bone health; other functions being discovered
- Deficiency common: infants at diagnosis, children & young adults
- Factors: season, skin color, sunlight exposure, geographic location, sunscreen use, intake, malabsorption, medications (glucocorticoids antibiotics), reduced fat mass
- New AAP, IOM, CF & Endocrine Society guidelines
- Deficiency: 25-OHvit. D <30ng/ml or 75nmol/L
- Treatment: hard to raise levels using guidelines; ? cholecalciferol more effective; monitor levels

Vitamin K

- Important for coagulation and bone metabolism
- Factors: maldigestion/malabsorption, bile salt deficiency, liver disease, bowel resection, bacterial overgrowth, antibiotics, excessive vitamin E supplements, inadequate intake
- Deficiency may decrease bone formation & is associated with low bone mass
- Supplementation improves markers of bone formation
- Prothrombin: delayed marker; PIVKA II: sensitive
- No cases of toxicity

Water-soluble Vitamins

• No recommendations: felt that ingestion of a balanced diet is adequate
• Multivitamins contain water soluble vitamins
• Riboflavin deficiency: angular stomatitis
• Vitamin C levels decreases with age
• Folic acid & vitamin B12 supplements: improved inflammatory responses

Minerals: Sodium

- Excessive salt loss through skin: may be influenced by genotype
- Human milk & infant formula does not have enough salt
- Salt depletion can cause anorexia, FTT, metabolic alkalosis with hypoelectrolytemia
- Infants: 2-4 meq/kg; 0.125 tsp till 6 months when it should be increased to 0.25 tsp
- Older patients: high salt diet
- Active in warm environments add 0.25 tsp to 12 oz sports drinks

Trace elements: Zinc

• Important in pulmonary health, immunity & growth
• Lack of appetite, alterations in taste, growth failure & disturbed immune function
• Prior to diagnosis: loss of endogenous zinc & malabsorption
• Can have zinc deficiency with normal levels: RBC zinc level may be better indicator
• Empiric zinc supplementation (1 mg/kg/day elemental zinc) with growth failure for 6 months

Trace Elements: Iron

- Anemia frequently seen; associated with poor lung function and vitamin deficiency
- Incidence of iron deficiency: 33% in children; 74% in older patients
- Anemia: true iron deficiency or anemia of chronic disease
- Deficiency: decreased dietary intake, increased loses in sputum & GIT, severity of supurative lung disease
- Iron deficiency not related to PERT
- *P. aeruginosa* actively acquires Fe from proteins in host airway, secretes sideropheres to acquire iron & produces inflammatory cytokines: results in anemia of chronic disease

Fatty Acids and CF

- **EFA:** linoleic acid & alpha linolenic acid
- **Deficiency:**
 - at diagnosis, alopecia, easy bruisability, skin rashes, suboptimal growth; can have only biochemical deficiency
- **Causes:**
 - fat malabsorption, abnormal membrane release & metabolism
- **Clinical:**
 - EFAD associated with ceramide deficiency, CF genotype & pancreatic status
 - Serum linoleic acid status associated with growth & pulmonary status
 - Abnormalities increase with age & presence of CF liver disease
 - Increased arachidonic acid release from membrane phospholipids
 - Decreased linoleic acid, decreased DHA
- **Treatment:**
 - supplementation with long chain fat & ? Intravenous fat
 - DHA supplementation will raise serum DHA levels in clinical trials, BUT no effects with respect to clinical outcomes safe to use

Bone Health & CF

- Decreased bone density, fractures & kyphosis occur earlier than in healthy controls
- Incidence of osteoporosis & fracture increases with age; > prevalent in adults & those with end stage lung disease
- Risk factors: inflammatory cytokines, vitamin D deficiency, inadequate calcium intake, corticosteroid use, small body size, low weight for height, decreased physical activity, delayed puberty, short bowel syndrome, liver disease, fractures, family history of osteoporosis
- DXA: if > 8 years & have risk factors
- Treatment:
 - Optimize calcium, vitamins D & K, nutritional status; increase physical activity; decrease corticosteroid use if possible; treat hormone deficiencies & bisphosphonate medications

Nutritional Management of CF

- All CF patients: different needs at different ages
- Nutritional assessment
- Nutritional education & dietary counseling
- Pancreatic enzyme replacement therapy (PERT)
- Micronutrient supplementation: A, D, E, K, Ca, Fe, Zn, Na (salt), EFA
- Oral (high calorie diet, oral supplements), tube feeds (NG, GT, NJ, GJ, JT), parenteral nutrition
Nutrition and CF: Anticipatory Guidance

- Infants: breast milk, formula, solids, Na
- Toddlers/preschool: calories, feeding behavior, whole milk
- School age: calories, snacks, autonomy, adherence, education
- Adolescence: high-risk period (DM, liver disease, infections, puberty, increased physical activity, adolescent behavior, eating disorders)

Nutritional Assessment in Routine CF Center Care

<table>
<thead>
<tr>
<th>Parameter</th>
<th>At diagnosis</th>
<th>Every 3 mo, birth to 24 mo</th>
<th>Every three mo</th>
<th>Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head circumference</td>
<td>✕</td>
<td>✕</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (to 0.1 kg)</td>
<td>✕</td>
<td>✕</td>
<td>✕</td>
<td></td>
</tr>
<tr>
<td>Length (to 0.1 cm)</td>
<td>✕</td>
<td></td>
<td>✕</td>
<td></td>
</tr>
<tr>
<td>Height (to 0.1 cm)</td>
<td>✕</td>
<td></td>
<td>✕</td>
<td></td>
</tr>
<tr>
<td>Mid-arm circumference (to 0.1 cm)</td>
<td>✕</td>
<td></td>
<td></td>
<td>✕</td>
</tr>
<tr>
<td>Triceps skinfold (to 1.0 mm)</td>
<td>✕</td>
<td></td>
<td></td>
<td>✕</td>
</tr>
<tr>
<td>Mid-arm muscle area, mm(^2) (calculated from MAC and TSF)</td>
<td>✕</td>
<td></td>
<td></td>
<td>✕</td>
</tr>
<tr>
<td>Mid-arm fat area, mm (calculated from MAC and TSF)</td>
<td>✕</td>
<td></td>
<td></td>
<td>✕</td>
</tr>
<tr>
<td>Biological parents height</td>
<td>✕</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pubertal status, female</td>
<td></td>
<td></td>
<td></td>
<td>✕</td>
</tr>
<tr>
<td>Pubertal status, male</td>
<td></td>
<td></td>
<td></td>
<td>✕</td>
</tr>
<tr>
<td>24 hour diet recall</td>
<td></td>
<td></td>
<td></td>
<td>✕</td>
</tr>
<tr>
<td>Nutrient intake</td>
<td></td>
<td></td>
<td></td>
<td>✕</td>
</tr>
<tr>
<td>Anticipatory dietary and feeding behavior guidance</td>
<td>✕</td>
<td>✕</td>
<td></td>
<td>✕</td>
</tr>
</tbody>
</table>

Lack of Appetite in CF: Common Causes

- GERD
- Fullness and bloating from DGE & SBBO
- Abdominal pain from DIOS & SBBO
- Medications: metronidazole
- Poor eating habits
 - lack of mealtime structure
 - behavioral problems
 - ADHD
 - eating disorders
- Depression
- Chronic respiratory disease, pulmonary exacerbations (fever, increased cytokines)
- Sinusitis
- Zinc deficiency
What To Do when Poor Growth is Identified in Patients with CF

• See patients more frequently with RD:
 – Infants: every 2 - 4 weeks
 – Children 2 years and older: every 4 - 6 weeks

• Include: medical, behavioral, & nutritional assessment, education, interventions

• Diet analysis:
 – Qualitative: where, when, who, which, how much? Patterns: e.g., meal skipping
 – Quantitative: 3-5 day food records to assess kcal and nutrient intake

• Involvement by Registered Dietitian important

• Aim: Achieve patient’s target weight for length or BMI percentile taking into account genetic height potential

Algorithm for Patients with Weight Loss or Lack of Weight Gain

Weight loss or lack of weight gain identified

Is pulmonary or sinus disease active?

Treat

Yes

No

If no weight gain, also consider:

• GERD
• CFRD
• Nocturnal Hypoxia

Are there signs and symptom of malabsorption?

Yes

No
Signs and Symptoms of Malabsorption?

YES

Poor adherence to the prescribed regimen?

- **No**
 - **Yes**
 - Counsel

Enzyme dose ineffective or low?

- **No**
 - **Yes**
 - Correct problem

Large juice / pop / tea intake or grazer?

- **No**
 - **Yes**
 - RD counseling

Add H₂ blocker or PPI to improve fat absorption

Reassess in one month. If no better, patient should have GI evaluation or consultation. Energy / nutrient / behavioral evaluation as appropriate. Consider use of enteral feedings.

© 2012, NASPGHAN NUTRITION UNIVERSITY
Signs and Symptoms of Malabsorption?

- RD counseling to maximize energy intake
- Feeding behavior evaluation and intervention
- Psychosocial and economic evaluation and intervention
- R/O CFRD with or without fasting hyperglycemia
- Consider other medical factors:
 - Sino pulmonary disease
 - GERD
 - Bacterial overgrowth
 - Constipation
 - Iron deficiency
 - Other
- Consider use of enteral feedings
Laboratory Monitoring

<table>
<thead>
<tr>
<th></th>
<th>At Diagnosis</th>
<th>Yearly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vitamin K (PIVKA II)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EFA</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Ca/Bones</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Iron status</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Zinc</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Sodium</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Protein stores</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* As indicated

Behavioral Evaluation of CF Patients with Poor Growth

• Assess early
• Check for presence of ineffective feeding behaviors & parenting strategies
• Adolescents with very poor body wt: check for eating disorder eg. anorexia nervosa
• Check for skipping enzymes (30%)
• Encourage being open but discreet about CF

Pancreatic Enzyme Replacement Therapy in CF

- Enteric coated (microspheres); vary in pH, source of lipase
- Open capsule in apple sauce; develop a routine
- Check mouth for ulcers, do not crush or add to bottle
- Store enzymes in a cool dry place
- Adequate number required - vary with food amount & composition
- Take with all foods & beverages except simple sugars
- Carry enzymes all the time
- Best if swallowed, check for freshness
- Split if the meal is longer than 20-30 min
- Creon, Zenpep, Pancreaze, Viokace, Ultresa

Pancreatic Enzyme Replacement Therapy in CF

- 2008: No data upon which to base dosing recommendations
- 1995: Dose
 - Infants: 2000 - 4000 U lipase/120 ml of formula or per breast feeding
 - Children < 4 yrs: 1000 - 2500 U lipase/kg/meal
 - Children > 4 yrs: 500 - 2500 U lipase/kg/meal
 - Half standard dose with snacks
 - 1000 - 4000 U lipase/gram fat

Poor Response to Pancreatic Enzyme Therapy

• Symptoms:
 – Bloating, gas, abdominal pain, diarrhea, poor growth

• Causes:
 – Excessive juice intake
 – “Grazing”
 – “Fast food”
 – Enzymes: improper administration or non-compliance, outdated, poor storage, acid intestinal environment
 – GI conditions: lactose intolerance, infections, bacterial overgrowth, liver disease, C. difficile colitis, celiac disease, short bowel syndrome, IBD

PERT and Gastric Acid Blockage

• Effect of Cimetidine & bicarbonate on PERT
 – N=15 with CF & PI; PERT with cimetidine or bicarb or both
 – Improved fat & nitrogen balance with either cimetidine or bicarb
 – No additive effect when both were used

• Effect of PPI on Absorption in CF
 – Evaluate effect of raising intestinal pH on PERT
 – 1 month cross over study
 – 14/15 patients- improved fat absorption
 – High PERT doses: 13,500 U lipase/kg/day; 3300 U lipase/gm of fat
 – Fat malabsorption decreased from 13% - 6%

Appetite Stimulants & Anabolic Agents

- Cyproheptadine
- Megesterol acetate: increases appetite & weight, but not sustained; adverse effects
- Insulin:
 - Promotes anabolism & decreases blood sugar
- Growth hormone:
 - Increases height & weight but underweight remains
 - Reverses protein catabolism & decreases inflammatory cytokines
 - Longitudinal studies needed
 - Should not be routinely used

Tube Feeds and CF

- Give 30-50% of goal kcals overnight; night time feeds to allow normal day time eating patterns
- Infants: 120-150 kcal/kg/day (catch-up, lung & long term growth)
- Titrate calories based on weight gain, fat stores & growth
- Standard (complete protein, long-chain fat) formula well tolerated
- Very low fat elemental formulas: no need for PERT, useful in intubated patients given continuous feeds
- Calorically dense (1.5 - 2 kcal/cc) for adequate calories
- ? MCT containing formulas are beneficial
- Use semi-elemental formulas in patients with excessive anorexia, bloating, nausea
• Individualize choice of formula:
 – SBS: high fat, MCT, low simple sugars
 – Malabsorption: partially digested
 – DM: low simple sugars
 – Advanced lung disease: high fat
 – Severe GER: peptide based
 – Food allergies: amino acid based
PERT: Tube Feeds & in the NICU

• Tube feeds
 – Take usual dinner dose orally at start with all feeds except very low fat elemental formulas
 – May give additional doses midway or at end of feeds
 – Check sugar 2-3 hours into feeds and at end of feeds on 2 separate nights
 – Give insulin if blood sugar is > 180mg/dl Repeat blood sugar if pt not gaining weight, is ill, or is on corticosteroids

• NICU
 – Start when formula intake is 60 cc Q3H: 3,000 lipase units PO in applesauce or 1/8 tsp viokace powder
 – With continuous feeds – use 3,000 lipase units or 1/8 tsp viokace powder Q4H
 – Watch for skin breakdown at ostomy & anus
 – Clean mouth after feeds to prevent oral ulcers

Case Study

- 5 mo. old with weight loss & diarrhea (6-8/day, loose & foul-smelling)
- Diagnosed by newborn screen and was referred to local CF center
- Father changed jobs; report they are giving all prescribed therapies
- Excellent eater and very hungry, happy, mild developmental delay
- 48 oz/day of standard infant formula & 2 oz rice cereal mixed with water BID
- Medications: standard infant multivitamins; PERT: 6000 units pancreatic lipase 4 times/day: pour beads down her throat followed by 1 oz water in her bottle
- Exam: weight, length & weight for length <5th percentile; HC 25th percentile, abdominal distension, hepatomegaly, wasting
Nutrition Guidelines for Management of Infants

- Human milk or stand. infant formula; not hydrolyzed prot. formulas
- Calorie dense feeds if wt loss/ inadequate wt gain
- Encourage positive feeding behaviors – educational resources. Growth deficits: intensive treatment with behavioral intervention & nutrition counseling; 1-12 yr
- Start multivitamins with approp. amt for CF shortly after diagnosis; check fat soluble vitamin levels 2 months later & annually; > freq if values are abnormal
- Trial of elemental Zn 1 mg/kg/d for 6 mo., if not growing well despite adequate caloric intake & PERT
- Salt: 1/8th tsp, diagnosis - 6 mo; ¼ tsp after
- 0.5 - 2 yr: if water has < 0.3ppm, give fluoride 0.25 mg/dl
CF Specific Multivitamins

<table>
<thead>
<tr>
<th></th>
<th>CF</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamins A (Beta-carotene), E, D</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Vitamin K (infant formulation)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Vitamin K</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Zinc, biotin, pantothenic acid</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Vitamins B12 & C, thiamine</td>
<td>++</td>
<td>-</td>
</tr>
<tr>
<td>Folate</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Case Study

- PERT was provided before bottles & cereal
- Salt was added to her diet
- CF specific multivitamin was prescribed.
- Cereal was mixed with formula for increased caloric intake
- Return visit in 2 weeks: weight gain was 45 gms/day. Formula intake decreased but she still gained weight.
- Bms decreased to 2-3 pasty/soft stools daily
- Excellent weight gain & linear growth at monthly visits till she was 1 year of age; after that her visits were every 2-3 months
- Annual study labs including fat soluble vitamin levels & zinc were normal
- Father got a new job & at age 4 she was transferred to another CF center
Case Study

- She returns to your CF Center at age 14 years & says she is doing very well with no problems & “regular” stools
- Pulmonary function tests: FEV1 = 48% predicted
- Examination: weight is <5th percentile, height is 10-25th percentile, BMI is 5th percentile. Bilateral crackles are present & she is admitted for pulmonary & nutritional management
- In the hospital she was noted to have 3-4 foul smelling loose stools/day, excessive gas & poor appetite
Case Study

• Her fat soluble vitamins are all low & she is zinc deficient
• Her baseline breath hydrogen level is high & lactose breath test could not be performed. She is given a course of metronidazole for 10 days
• Celiac panel is negative; normal glucose levels
• She is put on appropriate PERT therapy, CF specific vitamins & zinc supplement. The CF dietitian reviews with her a high calorie diet as well as PERT usage including adjusting her PERT intake depending on the fat content of her meals
• She started oral supplements 1-2/day
• She gains weight by the end of her 14 day admission & is feeling much better at the time of discharge. Her FEV1 improves & is now 80% predicted
• On subsequent visits you notice declining lung function & her inability to keep up with the oral nutritional recommendations by the CF dietitian
• Her BMI drops to the 10th percentile & you are asked to see her
Case Study

• Her PERT administration & dose is optimal
• Psychological assessment is negative for depression or an eating disorder
• You bring up possible tube feeds & she requests that she talk to another adolescent girl who has success with tube feeds
• After much discussion she agrees to tube feeds
Summary

• Nutrition plays an important role in the care of the patient with CF
• Growth assessment should be done at every visit. Goal is BMI at 50th percentile or weight for length at the 50th or above percentile
• Annual monitoring should be part of management
• PERT should be reviewed at every visit (total daily dose) & when the patient is not growing optimally
• The CF center dietitian should evaluate the patient quarterly or more often if there is growth failure

Energy and Protein Metabolism

Nutrition Assessment and Growth Charts

Parenteral Nutrition

Enteral and Parenteral Access: Lines, Locks, and Tubes

Critical Care Nutrition Pearls

Nutrition in Liver Disease

Enteral Nutrition

Short Bowel Syndrome

Overview of Obesity and Bariatric Nutrition

Perioperative Nutrition

Food Allergies and Eosinophilic Gastrointestinal Diseases

Failure to Thrive

Cystic Fibrosis

2. Cystic Fibrosis Foundation Patient Registry 2010 Annual Data Report, Bethesda, Md.

19. Feranchak AP, Sontag MK, Wagener JS, *et al.* Prospective, long-term study of fat-soluble vitamin status

