Esophageal Variceal Bleeding

Wait Expectantly
Karen Murray, MD

Act Prophylactically
Maureen Jonas, MD

Learning Objectives
1. Accurately assess the risk of variceal hemorrhage in pediatric patients with portal hypertension
2. Develop a treatment strategy for variceal bleeding in children
3. Recognize gaps in evidence-based pediatric management of variceal bleeding

Primary Prophylaxis of varices
- Measurement of portal hypertension
- Guidelines for prophylaxis in adults
- Non-selective β-blockers
- Sclerotherapy
- Endoscopic Band Ligation (EBL)

Measurement of portal hypertension
- Hepato-venous pressure gradient (HVPG)- surrogate marker of portal pressure
- Reduced risk of variceal bleeding: 1-3;
 - HVPG < 20% from baseline or,
 - ≤12 mmHg

Portal Hypertension
- Quantitatively defined as a pressure gradient between portal vein and hepatic veins of greater than 5 mmHg
- Hepatic vein pressure gradient of >10 mmHg strongly predicts development of varices
- Variceal bleeding unlikely with HVPG <12 mmHg
- HVPG now used in adults as HR weakly correlated with portal hemodynamics1,2

Disclosures

Echosens
No relevant financial relationships
Maureen Jonas, MD
Karen Murray, MD

Gastroesophageal Varices

- Present in almost half of patients with cirrhosis at the time of diagnosis (increased in CTP Class B and C patients)
- Development and growth of GE varices: 7% per year
- 1-year rate of first variceal hemorrhage is 5% for small varices, 15% for large varices
- Red wale marks on varices, advanced liver disease predict higher risk for hemorrhage
- 1-year rate of recurrent variceal hemorrhage is ≈ 60%
- The 6-week mortality with each hemorrhage episode is close to 0% for CTP class A, ≈ 30% for CTP class C.

Variceal Hemorrhage

- A common presentation of extrahepatic portal vein obstruction
- Significant morbidity and anxiety
- A lethal complication of cirrhosis (ascites, jaundice, previous hemorrhage)
- Three management issues:
 1. Primary prophylaxis
 2. Treatment of acute bleeding episode
 3. Secondary prophylaxis

Risk Stratification

- Not clearly defined
- Cirrhotic vs non-cirrhotic portal hypertension
- Compensated vs decompensated cirrhosis

Rationale to reduce portal pressure

- Varices do not develop until HVPG increases to 10-12 mmHg
- Varices do not bleed until HVPG reaches at least 12 mmHg
- If HVPG decreases below 12 mmHg, either by pharmacologic treatment or improvement in liver disease, variceal bleeding is prevented
- Even if HVPG does not go below 12 mmHg, a 20% decrease in portal pressure from baseline offers marked protection from variceal bleeding
- HVPG decrease is associated with lower risk of developing ascites, DBP, HRS and death

β-Blockers

- Low Cost
- No special expertise
- Prevent other PTHN bleeding
- Lower the risk of ascites
- Lower the risk of SBP
- Relatively common contraindications
- Side effects (fatigue and SOB) that require discontinuation in up to 15-20%
- Pediatrics: dosing guidelines, goal HR not clear

Safety of β-blockers in children

- Now the treatment of choice for infantile hemangiomas – safe and well tolerated
- Used successfully in treatment of dilated cardiomyopathy and some arrhythmias in children, with good safety profile
- Demonstrated value to ameliorate the hyperdynamic, hypermetabolic, hypercatabolic state after large burns in children
- Demonstrated safety and efficacy with chronic use in the prevention of migraines in children

Varices in Children

- Up to 70% of children with biliary atresia or PV thrombosis
- Bleeding from Varices in children:
 - 17-29% in biliary atresia
 - 50% in PV thrombosis
- Mortality from 1st variceal bleed in children:
 - 2-5% with BA
 - 0-2% with PV thrombosis
 - (15-20% in adults)

Effectiveness of beta blockers in primary prophylaxis of variceal bleeding in children with portal hypertension

- Reduced Portal Flow
 - Direct reduction in variceal flow
 - Increased porto-collateral resistance
 - Decreased vascular compliance

Non-Selective β-Blockers

- ↓ the cardiac output- β1 receptors
- Splanchnic vasoconstriction- β2 receptors

Non-Selective β-Blockers
Are they really as safe as Dr. Jonas tried to tell you?

- Adverse effects: bradycardia, hypotension, conduction disorders, bronchospasm, hypoglycemia.
- Response to shock: tachycardia due to relatively fixed stroke volume
- Hypoglycemia from beta-blockers now recognized as cause of syncope, seizures, or altered consciousness in young children
- Meta-analysis of acute NSBB exposure reveals a mean change in FEV1 of -10.2% (95% CI, -14.7 to -5.6)

1. Arch Dis Child 2009;94:968–969

Non-Selective β-Blockers
Use in Children with Portal Hypertension

- HVPG now used is adults as HR weakly correlated with portal hemodynamics
- HVPG measurement is safe, but it is very invasive
- How pediatric HVPG correlates to variceal development not yet established
- Portal pressure may be underestimated in pediatric liver disease due to presinusoidal disease and the presence of veno-venous intrahepatic collaterals

NSBB in Children with Portal Hypertension

- Pediatric case-series of NSBB show 10-35% bleeding over 3-5 years of follow-up
- Overall bleeding noted in these case series was 2-11% per year of follow-up
- Natural history of similar population is 2-9% per year of follow-up

1. Ling S. Clin Liver Dis 2012;1(5):139-142

Carvedilol: is it a better NSBB?

- Additional vasodilation properties hence decreasing the hepatic vascular resistance of cirrhosis:
 - Anti-α_1 adrenergic activity
 - Enhances release of nitric oxide
 - Potentially more hypotension
- Results in adults mixed
- Pediatrics:
 - Not FDA approved for pediatric use
 - Long-term efficacy for preventing variceal bleeding comparable to propranolol

Carvedilol vs Propranolol

- 62 children (<12 years) followed for 2 years post NSBB
- 4.83% bled over the 2 years

Endoscopic Variceal Ablation

Sclerotherapy
Band Ligation
Endoscopic Variceal Ablation

Risks...in a non bleeding child

- Anesthesia
- Post-procedure pain
- Bleeding - immediate and with ulceration
- Stricture formation
- Infection
- Cost

Primary Sclerotherapy in Biliary atresia

1987-2009 Finland

- 47 consecutive children with BA post-Kasai
- Yearly endoscopy starting ≤ 12 months of age
- Prophylactic sclerotherapy for Grade 2/3 varices
 - Sessions every 2-4 weeks; 2 sites (1-7) injected/session
 - Yearly endoscopy if grade 0/1 varices
- Median follow-up 1.7 years (0.5-18.9 years)

Primary Sclerotherapy in Biliary atresia

- 60% with varices, median age 11 months (6-165 months)
- 34 patients had 2-30 endoscopies (median 4)
- Sclerotherapy sessions: 1-19 (median 2)
- Bili > 40µmol/L 6 months post portoenterostomy was the only variable significant for developing varices (OR 7.9, 95% CI 1.2-53, P=0.046)
- Bili > 40µmol/L 3 months post portoenterostomy = risk for bleeding (OR 17, 95% CI 1.7-175, P=0.017)

Overall 2-year survival 71%

Transplant-free survival not influenced by varices

Sclerotherapy and Band Ligation

- 36 children underwent primary prophylaxis with Sclerotherapy (44%; <8 kg or esoph. <11 mm), EBL (41%), or both (14%)
- Mean age 22 months (5-75 months)
 - Mean bili > 10 mg/dl
 - 20% with ascites

4.2 (1-10) sessions required to eradicate the varices

8.8 months (1.7-18.6)

within 14 months
Endoscopic ligation of esophageal varices for prophylaxis of first bleeding in children and adolescents

• 31 subjects, 4-17 years of age (9.5 ± 4.4)
• Mixed group: cirrhosis and PVT
• Grade II or more varices at BL, enlargement by at least 1 grade after 6 months of non-intervention
• Eradication achieved in 28 children (90.3%) after 2 EVL sessions at 3 month intervals
• No bleeding
• Recurrence of varices in 3 children after 12, 13 and 28 months

Bleeding-free survival in 36 children with biliary atresia and major endoscopic signs of portal hypertension who underwent primary prophylaxis

• 36 children (mean age 22 months) with either grade 3 EV or grade 2 EV with red wale markings and/or GV
• Mean # sessions to eradicate = 4.2
• Varices reappeared in 37%
• 97% 3-year survival

Duché M et al. Gastroenterology 2013;145:801