Helicobacter pylori and Antibiotic Resistance - what the Guidelines say and beyond …

My Child’s H. pylori Will Not Go Away (The Resistant Bug)

Benjamin D. Gold, MD, FAAP, FACG
Pediatric Gastroenterology, Hepatology and Nutrition
Children’s Center for Digestive Healthcare, LLC

Disclosures (1)

• In the past 12 months, I have had no relevant financial relationships with the manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services discussed in this CME activity

• I do not intend to discuss an unapproved or investigative use of a commercial product or device in my presentation

• However…

Disclosures (2)

• In the past 12 months, I have had the following relevant financial relationships with the following manufacturer(s) of any commercial product(s) and/or provider(s) of commercial services; none of whom had any input into the development or content of this presentation

 ▪ Takeda Pharmaceuticals North America - Consultant, honorarium
 ▪ AstraZeneca, LP - Consultant, honorarium
 ▪ Nestle USA; Speaker - Consultant, honorarium
 ▪ Nutricia; Consultant - Speaker; honorarium
 ▪ Johnson&Johnson - Consultant, Advisory Board; honorarium
 ▪ Pfizer, Inc. - Consultant, Advisory Board; honorarium
 ▪ Prometheus, Inc. – Speaker; honorarium
 ▪ Given Imaging – Consultant; honorarium
Educational objectives

- Briefly discuss the epidemiology and transmission of *H. pylori* infection, and,
 - how this might affect treatment success and antimicrobial resistance;
- Review the established gastroduodenal and extra-gastric diseases caused by *H. pylori* infection
- Describe, in brief, the evidence-based methods for diagnosis and testing for cure of *H. pylori* infection in children
- Present the therapeutic approaches to *H. pylori* infection and the reasons for treatment failure; in particular;
 - Epidemiology of *H. pylori* antibiotic resistance
 - Mechanisms for antimicrobial resistance of *H. pylori*
 - Guidelines for salvage therapy; or how treat when the first regimen you tried fails

Case Study

- 8 yr old boy originally referred by pediatrician with a 14 month history of abdominal pain, nausea and hemoccult negative stools
 - HPI
 - *H. pylori* serology negative (performed by PCP)
 - Abdominal pain; epigastric, awakens from sleep 5 nights/wk
 - Daily medications; PPI qd, H2RA qhs
 - FHx
 - Parents, US born, 2nd generation from the Dominican Republic
 - Reflux, peptic ulcer disease, recurrent anemia
 - Work-up after referral to Peds GI
 - Labs: Hgb 9.1, Hct 30.5, MCV 61; guaiac (+) stools
 - UGI: normal anatomy

Case Study cont’d

- Work-up cont’d
 - EGD (initial)
 - Esophagus: esophagitis (histology)
 - Gastric: nodular gastropathy, gastric erosions; chronic active gastritis; *H pylori* (+) on both CLO and histology
 - Duodenum: duodenitis (histology)
 - Treated with triple therapy x 14 days
 - Amoxicillin (75 mg/kg/day); clarithromycin (20 mg/kg/day)
 - PPI bid – which was continued after antibiotics finished
 - Supplemental iron
 - Outcome: stay tuned...
Medical Pioneers, Scientific Discovery and the Nobel Prize

2 Australians Win Nobel Prize in Medicine
Australians Barry J. Marshall and Robin Warren Win 2005 Nobel Prize in Physiology or Medicine by Matt Moore, Associate Press Writer

STOCKHOLM, Sweden Oct 3, 2005 — Australians Barry J. Marshall and Robin Warren won the 2005 Nobel Prize in physiology or medicine for showing that bacterial infection, not stress, was to blame for painful ulcers in the stomach and intestine.

The 1982 discovery transformed peptic ulcer disease from a chronic, frequently disabling condition to one that can be cured by a short regimen of antibiotics and other medicines, the Nobel Prize committee.

Thanks to their work, it has now been established that the bacterium Helicobacter pylori is one of the most common causes of peptic ulcers.

Previously Published Guidelines

- CANADA (Canadian HELICOBACTER PYLORI Study Group)

- EUROPE (ESPGHAN)

- UNITED STATES (NASPGHAN)
Potential Determinants of H. pylori Infection Acquisition

- **Necessary: exposure to the organism**
 - Living in or originating from high-prevalence areas
 - Infected family members and large family size
 - Infected contacts in the community
 - Environmental reservoirs
 - Behavior and other factors increasing exposure
 - Intimate contact, gastroenteritis, poor sanitary facilities

- **Additional factors contributing to transmission**
 - **Host factors**
 - Expression of gastric receptors
 - Host defenses: gastric acid secretion, immune responses
 - Other factors affecting the gastric environment
 - Young age
 - **Bacterial factors**
 - Protected localization
 - Motility, adhesion
 - Withstanding host defense
 - Urea activity, immune evasion
 - Adaptive evolution

Intra-familial Transmission

Is it Mom, Dad, brother or sister?

- **Multi-generation Vietnamese Study**
 - Community-based, cross-sectional study
 - 533 participants, 135 households
 - *H. pylori* infection detected by validated, research-based IgG ELSA
 - *H. pylori* infection significantly associated with
 - Infection in mothers and grandmothers (OR 2.5; CI 1.19-5.26), not fathers or grandfathers
 - Infection in both parents (OR 4.14; CI 1.29-13.23)

- **Cross sectional Israel/Arab Study**
 - 4 separate, rural geographic regions: north, central, south and east Israel; children ages 1-5 years (N=197)
 - *H. pylori* testing by polyclonal stool antigen test
 - Village of residence (OR 3.3; CI 1.83-11) and *H. pylori* (+) sibling (OR 4.4; CI 1.3-14.6) were significantly associated
Transmission of \textit{H. pylori} Infection: Are Children the “Effectors”?

- **Familial Clustering**
 - U.S.-Mexico Study: binational cohort from El Paso, Texas (US) and Juarez, Mexico
 - 4 \textit{H. pylori}-infected family members had \textit{H. pylori} isolation from fecal specimens
 - all 4 were infected with the same \textit{H. pylori} strain - genotype of \textit{vacA} s1a/m2
 - \textit{H. pylori} isolated from sewage and water sources, particularly in Juarez cohort (suggests water reservoir)

- **Parent to child transmission**
 - Aboriginal Canadian study
 - homologous DNA in soother (i.e., pacifier) soaking water and maternal saliva suggest oral-oral route of transmission via mother - child

Transmission of \textit{H. pylori} Infection

Maternal and sibling transmission, as well as birth origin: major determinants of infection acquisition

Epidemiology of \textit{H. pylori} Infection

- **Reservoir**
 - Humans (fecal-oral; oral-oral; gastro-oral)
 - Environmental: water; food sources
 - Other: zoonotic (flies, cats, dogs, sheep)?

- **Primary acquisition**
 - Childhood

- **Risk factors**
 - Developing countries/populations, poor hygienic conditions
 - Lower socioeconomic circumstances
 - Intra-familial clustering
 - Immigrants in industrialized nations
 - Crowded conditions
 - day care, orphanages, foster homes
Diseases Associated with *H. pylori* Infection

Adult Diseases Often Begin in Childhood

- Inflammatory bowel disease
 - early onset (i.e., <2 yrs) and poor treatment response results in increased complications

- *H. pylori*-associated gastroduodenal disease (ulcers, gastritis, and adenocarcinoma)
 - early childhood acquisition results in more severe adult disease outcomes

- Obesity
 - 12-fold increase of adult morbid obesity if BMI >85% at 10 years of age

- Functional bowel disease
 - adult outcomes of childhood onset recurrent abdominal pain

- Lung cancer (smoking); skin cancer (sun exposure); liver cancer (hepatitis B)

Are there Good, O.K. and...BAAAD *H. pylori*?

"The only good Helicobacter is a dead Helicobacter" Graham 1997

"In a world of black and white, *H. pylori* is grey" Blaser 1999

"Save the *H. pylori*" Fennerty 2000

"Helicobacter pylori is not and never was protective against anything, including GERD" Graham 2003

"Helicobacter pylori may be good in some, bad in others, and not so bad in most" Blaser 2008
Natural history of \textit{H. pylori} infection

- High level of acid production
- Normal gastric mucosa
- Gastritis
 - Antral-predominant gastritis
 - Corpus-predominant gastritis
- Atrophic gastritis
- MALT lymphoma
- Gastric ulcer
- Intestinal metaplasia
- Dysplasia
- Gastric cancer
- Asymptomatic \textit{H. pylori} infection
- Low level of acid production
- Advanced age
- Host/Environmental Factors
 - Oxygen Free Radicals
 - Nitrosamines, nitrates
 - Ascorbic Acid (Vitamin C)
 - Genetic Co-factors (IL-1\(\beta\) polymorphisms)
- Increased Gastrin
- Salt Intake
- Smoking, alcohol abuse
- Bacterial Factors
 - Antigen Mimicry
 - Cytotoxin; CagA status
 - Type II Secretion
 - Heat Shock Protein
 - Urease
- Type IV Secretion
- Adhesion; Adhesin(s)

Infection and Malignancies

The \textit{H. pylori} Paradigm

- Infection-attributed malignancy
 - 1.9 million cases per year
 - 17.8% of global cancer burden
 - Viruses, schistosomes and specific bacteria
 - \textit{H. pylori} is leading factor responsible for 5.5% of all cancers

- Other bacterial infections and cancer
 - Chronic inflammation +/- toxins that change cell cycle resulting in altered cell growth
 - "Carcinogenic bacteria" are highly site-specific
 - \textit{Salmonella typhi} and gallbladder cancer
 - \textit{Streptococcus bovis} and colon cancer
 - \textit{Chlamydia pneumonia} and lung cancer

\textit{H. pylori} and Disease Outcomes in Children – Gastric Cancer in Childhood?

- Atrophic Gastritis
- Intestinal Metaplasia

- Cases:
 - 11 yo girl with anemia, abdominal pain, poor appetite
 - FHx: 13 yo sib with AG and IM; mother and father with AG; maternal grandmother with gastric CA

H. pylori-associated Gastroduodenal Disease in Children and Adults

- **Gastritis**
 - ~100% of infected persons
 - Majority asymptomatic; inflammation does not always = symptoms
- **Ulcers**
 - 5-15% of infected persons; unknown population-based prevalence in children
 - Duodenal > gastric
 - Role of non-steroidal anti-inflammatory agents?
- **Atrophy with/without Intestinal Metaplasia**
 - <2%; true prevalence not known
 - at-risk populations?
- **Gastric adenocarcinoma**
 - Case reports
 - At-risk populations; biomarkers identifiable in childhood
 - MALT lymphoma
 - < 1%; true prevalence not known
 - Eradication = disease resolution

GI Symptoms or GERD (Children) Who To Test and When to Treat

- Recurrent abdominal pain is not an indication to test for *H. pylori* infection
- *H. pylori* testing is not required in patients with newly diagnosed gastroesophageal reflux disease; in whom proton pump therapy is to be initiated
 - When long-term treatment with a PPI is planned, *H. pylori* infection eradication can be considered

Extra-Gastric Disease Associated with *H. pylori* Infection
H. pylori Infection and Blood Disorders: Summary

- A number of mechanisms for iron deficiency with or without anemia have been described which provided evidence for biological plausibility.
- *H. pylori* eradication studies demonstrated evidence supporting cause-effect i.e., *H. pylori* infection and iron deficiency.
 - Further long-term *H. pylori* eradication follow-up studies (>1 year) are needed with assessment of iron deficiency and anemia.
- ITP is an acquired bleeding disorder.
 - Autoantibodies bind to the platelets surface resulting in platelet destruction in the reticuloendothelial system.
 - *H. pylori* infection appears to have higher prevalence rates in patients with chronic ITP compared to those without ITP.
 - Eradication of *H. pylori* results in normalization of platelet populations in up to 60% of patients with chronic ITP.

H. pylori Infection and Extra Gastric Disease

- There is currently insufficient evidence that *H. pylori* infection is causally related to:
 - Otitis media
 - Upper respiratory tract infections
 - Periodontal disease
 - Sudden infant death syndrome (SIDS)
 - Coronary artery disease; atherosclerosis
- Growing body of evidence that *H. pylori* is a causal factor leading to:
 - Short stature, poor growth velocity
- Continued controversial associations/causations:
 - Asthma, allergy
 - Inflammatory Bowel Disease

Diagnosis of H. pylori Infection

- Various diagnostic methods are available, including serology, breath tests, and endoscopy.
Diagnosis of *H. pylori* Infection in Children

- The primary goal for clinical investigation of gastrointestinal symptoms is to
 - determine the underlying cause of the symptoms and...
 - not solely the presence of *H. pylori* infection

When To Test in Children

- If endoscopy is performed for the diagnosis of persistent abdominal symptoms
 - testing for *H. pylori* should be considered
- When *H. pylori* infection is detected by histopathology in the absence of peptic ulcer disease
 - *H. pylori* treatment can be considered
- If a history of gastric cancer exists in primary relatives
 - testing for *H. pylori* in the child is suggested

Invasive Methods for Diagnosis

- Validated tissue-based (invasive) diagnostic tests for *H. pylori* infection that can be used for clinical decision making in BOTH adults and children
 - Histology with appropriate staining
 - Rapid urease test
 - Primary Culture
 - Includes antibiotic susceptibility testing
 - FISH (controversial)
 - PCR and Real Time PCR (controversial)
Invasive Methods for Diagnosis
Children and Adults

• For the diagnosis of *H. pylori* infection during EGD…
 - It is recommended to obtain gastric biopsies (antrum, incisura and corpus) for histopathology according to the updated Sydney classification
 - It is recommended not to perform biopsy based and non-invasive tests (UBT, stool test) for at least…
 - 2 weeks after stopping PPI therapy and
 - within 4 weeks after stopping antibiotics
• Culture and PCR are primary means for antibiotic susceptibility profiles
 - Neither is widely available for clinical use

Non-Invasive Methods for Diagnosis in
Children and Adults

• Validated non-invasive diagnostic tests for *H. pylori* infection before antibiotic therapy, and, used for clinical decisions must detect active infection
 - 13C-urea breath test
 - Stool antigen tests (monoclonal, polyclonal)
• Tests based on the detection of antibodies (IgG, IgA) against *H. pylori* are NOT reliable for use in the clinical setting
 - Serum, whole blood, urine and saliva
• Antibody testing is inexpensive and widely available but has poor predictive value in
 - Populations with low *H. pylori* prevalence
 - Bleeding ulcers, gastric atrophy, MALT lymphoma
 - Recent or current use of PPIs and antibiotics

Methods to Determine
H. pylori Eradication in Adults and Children

• UBT is the most reliable non-endoscopic test to document eradication success (i.e., test for cure)
• Monoclonal fecal antigen test provides another non-endoscopic means of establishing *H. pylori* cure after eradication
• Testing for eradication appears to be most accurate if performed at least 4 - 6 weeks after the completion of antibiotic therapy
Treatment of *H. pylori* Infection

First line eradication regimens (twice daily for 10-14 days)

- **Option 1**
 - PPI + Amoxicillin + Imidazole (e.g. Metronidazole, Tinidazole)
- **Option 2**
 - PPI + Amoxicillin + Clarithromycin
- **Option 3**
 - Bismuth salts + Amoxicillin + Imidazole
- **Option 4**
 - Sequential Therapy: PPI+Amoxicillin (5 d), then PPI+Imidazoles+ Clarithromycin (5 d)

Recommended Eradication Therapy Regimens for *H. pylori*-Infected Children

- Jones NL et al. *Canadian J Gastroenterol* 2005;19(7):399-408

Sequential Therapy for *H. pylori* Infection Eradication

Sequential Therapy

- PPI BID + Amoxicillin BID X 5 days
- PPI BID + Clarithromycin BID + Imidazole BID (Tinidazole; Metronidazole) X 5 days
H. pylori eradication

Duration of Therapy and Post-Therapy

- It is recommended that the duration of triple therapy is 7 – 14 days
- Costs, compliance and adverse effects (e.g. antimicrobial resistance of the patient) should be taken into account when choosing the eradication regimen
- A reliable non-invasive test for eradication is recommended at least 4-8 weeks following completion of therapy

Case Continues

- Symptoms persist; mild and intermittent
- Follow up UBT and endoscopy at 3 months
 - UBT: negative
 - EGD: erosion healing, nodularity almost gone;
 - Histology: mild esophagitis, gastritis, and no evidence of infection
- But….symptoms return 6 months later;
 - Nausea, regurgitation and epigastric pain

What would you do now?
The Growing Concern Regards Antibiotic Resistant *H. pylori*

Approach to Therapy

Treatment Strategies and Antibiotic Resistance

- Surveillance of antibiotic resistance rate of *H. pylori* strains in children and adolescents is recommended in different countries, specific populations and geographic areas where...
 - High rates of infection exist and
 - High rates of resistant strains are likely
- Antibiotic susceptibility testing for clarithromycin is recommended prior to initial clarithromycin-based triple therapy in
 - Areas/population with known high resistance rate (>20%) of *H. pylori* strains in children
- World wide cure rates of PPI + amoxicillin + clarithromycin now in “unacceptable range (<90%)”
 - Assumption: patients are infected with resistant strains

Comparison of studies with >100 pts employing PPI + amox + clari

![Graph comparing ITT cure rates (95% CI)](image)

- Comparison of studies with >100 pts employing PPI + amox + clari
- Jones NL et al. *Canadian J Gastroenterol* 2005;19(7):399-408
H. pylori Treatment: Clarithromycin Resistance (2012)

Resistance rates expressed as percentages: Children > Adults

- Asia: 14-18
- Africa: 14-18
- North America: 12-38
- South America: 15-30

H. pylori Treatment: Metronidazole Resistance (2012)

Resistance rates are expressed as percentages: Adults > Children

- Asia: 24-30
- Africa: 17-20
- North America: 60-94
- South America: 11-95

Clarithromycin Resistance is High in H. pylori-infected Children

Multicenter study in 14 European Countries

<table>
<thead>
<tr>
<th></th>
<th>Prior 1st tx.</th>
<th>Post tx.</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>23%</td>
<td>35%</td>
<td>25%</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>20%</td>
<td>42%</td>
<td>24%</td>
</tr>
<tr>
<td>DR</td>
<td>5%</td>
<td>15%</td>
<td>7%</td>
</tr>
</tbody>
</table>

S. Koletzko et al Gut 2006;55:1711-18
Risk Factors: Carithromycin Resistance

<table>
<thead>
<tr>
<th></th>
<th>OR</th>
<th>adj. OR</th>
<th>95% CI</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>1</td>
<td>1</td>
<td>[1.12-2.24]</td>
<td>0.01</td>
</tr>
<tr>
<td>male</td>
<td>1.62</td>
<td>1.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>12 y</td>
<td>1.38</td>
<td>1.21</td>
<td>[0.81-1.78]</td>
<td>0.35</td>
</tr>
<tr>
<td>6-12 y</td>
<td>2.03</td>
<td>1.82</td>
<td>[1.19-3.03]</td>
<td>0.02</td>
</tr>
<tr>
<td><6 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Center</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NWE-Europe</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>South-Europe</td>
<td>2.29</td>
<td>2.25</td>
<td>[1.53-3.30]</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Boys, children <6 y and children living in South-Europe have an increased risk to harbor a CLA-resistant strain.

S. Koletzko et al Gut 2006;55:1711-16

Antimicrobial Resistance of H. pylori: Europe 2013

- 18 countries, 2,204 patients; highest in Western and Southern Europe
- High rate of clarithromycin resistance prohibits first line empiric use in Hp therapy

Reasons for H. pylori Treatment Failure

- Inadequate treatment of the primary infection
 - Compliance
- Reinfection by other family members
 - Transmission of H. pylori within a family appears to be the predominant mode of contamination
- Resistant infecting H. pylori strains
- Resistance rates (highest to lowest)
 - Metronidazole
 - Clarithromycin
 - Quinolones (Levofoxacin, Ciprofloxacin)
 - Tetracycline
 - Amoxicillin

Case Outcome

- Performed repeat upper endoscopy
 - Macroscopic: antral nodularity, gastric erosions
 - Microscopic: antral predominant gastritis; H. pylori positive by silver stain; rapid urease test positive
 - Biopsies sent for primary culture and resistance testing by Agar Dilution

- H. pylori strains grow and found resistant to both clarithromycin and metronidazole

- PPI-based quadruple triple therapy with amoxicillin and levofloxacin + peptobismol initiated for 4 weeks (PPI continued for 8 weeks)

- Follow up endoscopy and biopsy at 6 months;
 - Biopsies negative for H. pylori by histology and primary culture as well as urease test
 - Histology improved but not absent

Recommended Salvage Therapies for Eradication of Resistant H. pylori

Salvage therapies should be employed for 2 weeks minimum

- Option 1
 - PPI + Amoxicillin + Imidazole (e.g. Metronidazole, Tinidazole) + Bismuth salts
 - 2 week and 4 week options employed; longer is better

- Option 2
 - PPI + Amoxicillin + Quinolone (e.g. Levofloxacin) x 4 weeks

- Option 3
 - PPI + Bismuth salts + Amoxicillin + Tetracycline
 - 2 week and 4 week options employed

- Note: directly observed therapy yields best results; not feasible in practice

H. pylori infection in 2013: Summary

- No multicenter randomized controlled trials evaluating efficacy of different regimens and new antimicrobial agents for H. pylori eradication in childhood
- Reduction in eradication rates has the potential of creating a public health problem with refractory H. pylori infection
- Could infection transmission be successfully interrupted?
- New/novel therapies showing promise
 - Probiotics: adjuvant to traditional therapy; reduce side-effects, increase efficacy
 - Green tea catechins (epigallocatechin gallate); Pronase, N-acetyl cysteine
 - Furazolidone; nitazoxinide; levofloxacin
 - Vaccines: is there really a future for enteric infection vaccination?
- Antibiotic resistance is still a main factor affecting the outcome of H. pylori treatment
 - H. pylori strains isolated from children - higher clarithromycin resistance (16 – 24%) than adults
 - Imidazole resistance (e.g. metronidazole) generally lower in H. pylori isolates from children compared to adults
 - Emerging resistance observed for amoxicillin, tetracycline and quinolones

References:
Thanks for your kind attention!

Questions?